首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract.  Male cicadas produce a loud calling song that attracts females at long range. In some cases, ambient temperature has been shown to have an effect on the temporal structure of this acoustic signal. Here, a positive correlation is reported for the first time between the ambient temperature and the sound power of the calling song. This relationship is illustrated in three species of the Palaearctic genus Tibicina : Tibicina corsica fairmairei Boulard, Tibicina garricola Boulard and Tibicina tomentosa Olivier. It is suggested that the males thermoregulate behaviourally. The minimal ambient temperature range that the Tibicina species need to call is 22–24 °C. The effect of ambient temperature on calling song power is assumed to be the result of thermal effects in the response of the acoustic system (i.e. muscle activity of the acoustic system being temperature-dependent). Inter-individual and interspecific differences in calling song power are interpreted in the general context of the Tibicina sound behaviour.  相似文献   

2.
The cicada Okanagana rimosa (Say) has an acoustic communication system with three types of loud timbal sounds: (i) A calling song lasting several seconds to about 1 min which consists of a sequence of chirps at a repetition rate of 83 chirps per second. Each chirp of about 6 ms duration contains 4-5 pulses. The sound level of the calling song is 87-90 dB SPL at a distance of 15 cm. (ii) An amplitude modulated courtship song with increasing amplitude and repetition rate of chirps and pulses. (iii) A protest squawk with irregular chirp and pulse structure. The spectra of all three types are similar and show main energy peaks at 8-10 kHz. Only males sing, and calling song production is influenced by the songs of other males, resulting in an almost continuous sound in dense populations. In such populations, the calling songs overlap and the temporal structure of individual songs is obscured within the habitat. The calling song of the broadly sympatric, closely related species O. canadensis (Provander) is similar in frequency content, but distinct in the temporal pattern (24 chirps per second, 24 ms chirp duration, eight pulses per chirp) which is likely important for species separation in sympatric populations. The hearing threshold of the auditory nerve is similar for females and males of O. rimosa and most sensitive at 4-5 kHz. Experiments in the field show that female phonotaxis of O. rimosa depends on parameters of the calling song. Most females are attracted to calling song models with a 9 kHz carrier frequency (peak frequency of the calling song), but not to models with a 5 kHz carrier frequency (minimum hearing threshold). Phonotaxis depends on temporal parameters of the conspecific song, especially chirp repetition rate. Calling song production is influenced by environmental factors, and likelihood to sing increases with temperature and brightness of the sky. Correspondingly, females perform phonotaxis most often during sunny conditions with temperatures above 22 degrees C. Non-mated and mated females are attracted by the acoustic signals, and the percentage of mated females performing phonotaxis increases during the season.  相似文献   

3.
In singing insects, the song is an important component of the specific mate recognition system (SMRS). In communities of sympatric singing species, there is a partitioning of communication channels, the so-called “acoustic niches.” Within one community, the songs of different species always differ in temporal or frequency characters, i.e. occupy different acoustic niches. However, conspecific songs do not always act as an interspecific reproductive barrier, despite always being a SMRS component. The species that do not communicate acoustically due to allopatry, different timing of vocalization, inhabiting different biotopes, or unmatched food specializations can produce similar songs while forming reproductively isolated communities. Individuals of different sexes need not only to recognize a conspecific mate but also to evaluate its “quality.” The close-range signal (courtship song) provides more opportunities for choosing the “best” male than does the distant signal (calling song). In many species of Orthoptera, courtship includes not only acoustic but also vibrational, visual, chemical, and mechanical signals. An analysis of cricket songs showed the courtship songs to be on average more elaborate and variable than the calling songs. At the same time, due to the difference in mating behavior between the two groups, the acoustic component of courtship is used for mate quality evaluation to a greater extent in grasshoppers than in crickets. The courtship songs of grasshoppers are generally more elaborate in temporal structure than cricket songs; moreover, they may be accompanied by visual displays such as movements of various body parts. Thus, song evolution in grasshoppers is more strongly driven by sexual selection than that in crickets. According to the reinforcement hypothesis, the premating barrier between hybridizing species becomes stronger in response to reduced hybrid fitness. However, our behavioral experiments with two groups of hybridizing grasshopper species did not confirm the reinforcement hypothesis. We explain this, firstly, by a low level of genetic incompatibility between the hybridizing species and secondly, by high hybrid fitness when attracting a mate. A high competitive capability of hybrids may be accounted for by attractiveness of new elements in hybrid courtship songs. When we divide similar forms based on their songs, we in fact distinguish biological species using the criterion of their reproductive isolation. Acoustic differences between species are usually greater than morphological ones. Therefore, song analysis allows one to determine the real status of doubtful species-rank taxa, to distinguish species in a medley of sibling forms, and to reveal cryptic species in the cases when morphological studies fail to provide a univocal result. At the same time, songs are subject to intraspecific variation the range of which is different in different groups. Therefore, it is necessary to study which degree of difference corresponds to the species level before interpreting the status of some forms based on song comparisons. Besides, song similarities cannot indicate conspecificity of acoustically isolated forms; on the other hand, song differences between these forms prove that they are full-rank species.  相似文献   

4.
蝉鸣特征及其在分类学上的意义:同翅目:蝉总科   总被引:11,自引:2,他引:9  
本文总结了蝉鸣的几种机制,并初步提出了具鼓膜发音器的蝉鸣模式图;综述了国内外有关蝉鸣在分类中的应用历史和现状;分析讨论了蝉鸣声在各级分类阶元中的差异和应用,即发音机制和方式可用于科及亚科级的分类;鸣声的颖谱特征和一些鸣叫行为可为属级分类提供一些依据,鸣叫节律型具有明显的种性,而音色的差异在近缘种,疑难种及其种下分类方面具有重要的意义。  相似文献   

5.
Song divergence between closely related taxa may play a critical role in the evolutionary processes of speciation and hybridization. We explored song variation between two Ecuadorian subspecies of the gray‐breasted wood‐wren (Henicorhina leucophrys) and tested the impact of song divergence on response behaviors. Songs were significantly different between the two subspecies, even between two parapatric populations 10 km apart. Playback experiments revealed an asymmetric response pattern to these divergent subspecies specific songs; one subspecies responded more to songs of its own subspecies than to the other subspecies’ songs, whereas the second responded equally strongly to songs of both subspecies. While song parameters revealed a mixed pattern of divergence between allopatric and parapatric populations, the majority of spectral characteristics showed increased divergence in parapatry, suggestive of character displacement. This increased song divergence in parapatry appeared to affect behavioral responses to playback as discriminating responses were most prominent in parapatry and against parapatric songs. The clear behavioral impact of subspecies‐specific song differences supports a potential role for song as an acoustic barrier to gene flow. The asymmetric nature of the responses suggests that song divergence could affect the direction of gene flow and the position of the subspecies‐specific transition.  相似文献   

6.
Field recordings of the calling song and of an amplitude modulated signal produced by males of Cicada barbara from North Africa and the Iberian Peninsula were analysed in order to assess the geographical acoustic variation and the potential usefulness of acoustic data in the discrimination of subspecies and populations. Sound recordings were digitized and the frequency and temporal properties of the calls of each cicada were analysed. In all regions studied, peak frequency, quartiles 25, 50 and 75% and syllable rate showed low coefficients of variation suggesting inherent static properties. All frequency variables were correlated with the latitude, decreasing from south to north. In addition, most acoustic variables of the calling song showed significant differences between regions, and PCA and DFA analyses supported a partitioning within this species between Iberian Peninsula+Ceuta and Morocco, corroborating mtDNA data on the same species. Therefore, the subspecific division of C. barbara into C. barbara barbara from Morocco and C. barbara lusitanica from Portugal, Spain and Ceuta finds support from the present acoustic analyses, a result which is also reinforced by molecular markers.  相似文献   

7.
Nezara viridula (L.) (Pentatomidae: Heteroptera) from Brazil, Florida, Italy and Slovenia, communicate by vibratory songs associated with long‐range calling and close‐range courting, rivalry and repelling. Each song is composed of spectrally and temporally different units. Spectrally different pulses of duration less than 300 ms are present in the male calling song. The female calling song is characterized by pulse trains composed of pulses shorter than 150 ms and pulse trains composed of a longer (> 700 ms) and shorter (< 250 ms) pulse. Shorter and longer pulses have different spectral characteristics. The male and female courtship songs are characterized by fusion of shorter (< 150 ms) pulses into a pulse train usually followed by a shorter (< 200 ms) postpulse in the case of the male courtship song. The female repelling song is a several seconds long vibration of irregular temporal structure. The short (< 400 ms) male rival song pulses are frequency modulated. The dominant frequency peaks of the songs investigated lie between 70 and 130 Hz. The dominant frequency and the microstructure of song spectra show no population specificity. The average duration varies more in calling than in courtship songs. The repetition time varies extensively in songs of different populations. Normal communication followed by copulation was observed between mates from Slovenia and Brazil and between mates from Florida and Italy. The potential role of different temporal and spectral parameters for species recognition and mate location is discussed in view of the expected distortion of the characteristic signal structure during transmission through plants.  相似文献   

8.
Abstract. Males of the harlequin bug, Murgantia histrionica (Hahn), produce five different vibrational songs, whereas females produce one song. Songs differ from those of other stink bugs primarily in their species‐specific temporal characteristics. The broad band male courtship songs of M. histrionica are achieved by a combination of different frequency modulated and/or narrow band subunits, with several higher harmonic frequencies. Males rather than females initiate substrate‐borne vibrational communication, and the longer‐range calling songs found typically in other pentatomid species are lacking. Interindividual differences in song temporal and spectral characteristics are discussed. Transmission of vibrational songs through a cabbage head is more efficient along veins than along lamina. Attenuation of signals transmitted through veins is low and similar to that reported previously for plant stalks. On the leaf vein, distances between peak amplitude minima and maxima are different for the dominant and subdominant frequencies. At any distance from the vibration source, a different relationship between spectral peak amplitudes can be recorded. Resolution of these differences, together with velocity differences between signals recorded on the vein and lamina, may help small stink bugs to estimate distance and to locate each other on a plant.  相似文献   

9.
雌性稻绿蝽的鸣唱开始了在基质中产生的通讯并引起雄性不同的特定反应。在两种自然情况下 ,我们检验了雄性稻绿蝽对N viridula ,Thyantapallidovirens和Thyantacustatoraccerra个体鸣唱刺激反应的物种特异性水平 ,并对反应强度和同种及异种刺激性鸣唱的时间特性进行了相关分析 ,证明雄性求偶鸣唱的发送和震动源的定位是最具物种特异性的反应。然而 ,即便是在这个水平上 ,雄性稻绿蝽不能将同种雌性个体的鸣唱与T .custatoraccera的第二个雄性个体的鸣唱区分开来 ,后者与前者有相似的脉冲持续时间和重复时间值。本文也讨论了涉及交配行为鸣唱期的有关信号的物种特定性的概念  相似文献   

10.
Anthropogenic noise produced by human activities affects acoustic communication in animals living in urban habitats. We recorded the calling songs of the cicada Cryptotympana takasagona in the Kaohsiung metropolitan areas of southern Taiwan to investigate possible acoustic adaptations to anthropogenic noise. C. takasagona did not call more in noise gaps. Acoustic features (peak frequency, quartile 25%, quartile 50%, and quartile 75%) of calling songs significantly increased with ambient noise levels. C. takasagona shifted the energy distribution of calling songs to higher frequencies in the presence of higher noise levels. We suggest that the acoustic adaptation by which song frequencies increase with levels of anthropogenic noise in C. takasagona may result from a size-dependent calling strategy in which small-sized males call more in noise conditions or large-sized males adjust their song frequency by changing their abdominal cavities.  相似文献   

11.
蚱蝉自鸣声的音色分为单音色、双音色.及三音色等.本文进一步阐明每种音色的变化及高幅值脉冲对主音色能量的影响.蚱蝉自鸣声音色的变化主要是指频谱主音色频率(MTF)的显著改变、蚱蝉单色自鸣声的MTF主要在4.1—5.8kHz的频带内变化,双音色自鸣声的主次音色频率有相互颠倒现象,MTF主要在3.6—5.4kHz之间,三音色自鸣声的MTF虽然在3.5—4.5kHz比较窄的频带内,但三个音色峰的能量十分接近显示了三种音色成分.同只蚱蝉自鸣声,在不同的鸣声段具有近似相等的最大幅值,但高幅值脉冲个数的多少不同,相应主音色能量的大小与这些脉冲个数的多少对应.  相似文献   

12.
ABSTRACT. The calling and courtship songs of 17-year cicadas and of Say's cicadas differ both in the sound frequency spectrum and in temporal pattern. Multiunit recordings with hook electrodes from the whole auditory nerve show that the hearing organs are especially sensitive to transient stimuli occurring in natural sounds. Artificially produced clicks elicit bursts of spikes synchronized among various primary sensory fibres. These fibres respond to natural calling and courtship songs with a specificity dependent on carrier frequency, rhythm and transient content of the sound, following sound pulses (i.e. tymbal actions) up to repetition rates of 200 Hz. An ascending, plurisegmental interneurone was characterized by intracellular recording and simultaneously stained with cobalt. Its main arborization spatially overlaps the anterior part of the sensory auditory neuropile, and the axon was traced as far as the prothoracic ganglion. Direct input from primary auditory fibres was suggested by latency measurements. Intracellular recordings from such neurons in different species show distinct auditory input, with phasic-tonic spike responses to tones. In general, the interneurone response is more species-specific to calling than to courtship songs, and the preferential response to the conspecific calling song is based primarily upon sound frequency content.  相似文献   

13.
The relationship between body size and vocalization parameters has been studied in many animal species. In insect species, however, the effect of body size on song frequency has remained unclear. Here we analyzed the effect of body size on the frequency spectra of mating songs produced by the two-spotted cricket, Gryllus bimaculatus. We recorded the calling songs and courtship songs of male crickets of different body sizes. The calling songs contained a frequency component that peaked at 5.7 kHz. On the other hand, courtship songs contained two frequency components that peaked at 5.8 and 14.7 kHz. The dominant frequency of each component in both the calling and courtship songs was constant regardless of body size. The size of the harp and mirror regions in the cricket forewings, which are the acoustic sources of the songs, correlated positively with body size. These findings suggest that the frequency contents of both the calling and courtship songs of the cricket are unaffected by whole body, harp, or mirror size.  相似文献   

14.
Evidence is presented that acoustic behavior in field cricketsis under firm genetic control. The calling song of adult malesis highly stereotyped and species specific. Hybrids can be madeby crossing two species of Teleogryllus with dissimilar callingsongs. The calling songs of the hybrids are uniquely differentfrom that of either parental species, and in addition the songsof the two reciprocal hybrids are different from each other.Genetic control of song production is polygenic and multichromosomal;sex-linkage of some song determinants is also indicated. Femalephonoresponse to calling song was measured on a Y-maze. Speciesspecificity of phonoresponse was confirmed and in addition,hybrid females prefer hybrid song to either parental song. Thepossibility that calling song production in the male and itsreception in the female are genetically coupled is discussed.  相似文献   

15.
MM Rothbart  RM Hennig 《PloS one》2012,7(9):e43975
In Europe, several species of crickets are available commercially as pet food. Here we investigated the calling song and phonotactic selectivity for sound patterns on the short and long time scales for one such a cricket, Gryllus spec., available as "Gryllus assimilis", the Steppengrille, originally from Ecuador. The calling song consisted of short chirps (2-3 pulses, carrier frequency: 5.0 kHz) emitted with a pulse period of 30.2 ms and chirp rate of 0.43 per second. Females exhibited high selectivity on both time scales. The preference for pulse period peaked at 33 ms which was higher then the pulse period produced by males. Two consecutive pulses per chirp at the correct pulse period were already sufficient for positive phonotaxis. The preference for the chirp pattern was limited by selectivity for small chirp duty cycles and for chirp periods between 200 ms and 500 ms. The long chirp period of the songs of males was unattractive to females. On both time scales a mismatch between the song signal of the males and the preference of females was observed. The variability of song parameters as quantified by the coefficient of variation was below 50% for all temporal measures. Hence, there was not a strong indication for directional selection on song parameters by females which could account for the observed mismatch. The divergence of the chirp period and female preference may originate from a founder effect, when the Steppengrille was cultured. Alternatively the mismatch was a result of selection pressures exerted by commercial breeders on low singing activity, to satisfy customers with softly singing crickets. In the latter case the prominent divergence between male song and female preference was the result of domestication and may serve as an example of rapid evolution of song traits in acoustic communication systems.  相似文献   

16.
Search theory predicts that females will use information on search costs and the characteristics of potential mates to adjust their search behavior and mate choices. We examined the effect of previous acoustic experience on female mating responses in the variable field cricket Gryllus lineaticeps . Females of this species prefer calling songs with higher chirp rates to those with lower chirp rates. In this study we examined how female responses to male calling songs change with experience by measuring the responses of females to male calls over a sequence of three trials. Females in one group (group I) were exposed to a sequence of three identical low chirp rate songs and females in a second group (group II) were exposed to two identical low chirp rate songs interspersed by a high chirp rate song. Females in group I did not show a significant difference in their responses to the initial and final low chirp rate presentations, whereas females in group II showed a significantly reduced response to the final low chirp rate song. In addition, the degree to which female responses to the initial and final low chirp rate song changed differed significantly between the treatment groups. Thus acoustic experience appears to affect female mating preferences in this species; exposure to either more attractive songs or more variable songs makes normally unattractive songs even less attractive. These results suggest that females do not use a fixed-threshold search rule in which they mate with any male with a phenotype that exceeds a given threshold. Instead, G. lineaticeps females appear to use a more complex search rule in which they adjust their searching behavior based on the local distribution of male phenotypes.  相似文献   

17.
In animal communication systems, matching mating signals and preferences enable species identification and successful reproduction. In some species, the environment introduces substantial variation in signals and/or preferences. Only a few studies have tested how the match between signals and preferences is maintained despite phenotypic variation. Signal–preference coupling in the context of phenotypic plasticity is the focus of this study. The bivoltine cricket Gryllus rubens displays seasonal differences in the pulse rate of its mating songs. The seasonal effect on other fine‐temporal characters of the songs besides pulse rate, such as pulse and interval duration, duty cycle, as well as the dominant frequency, is not known and is described in the first part of the study for a Kentucky population. In the second part of the study, we tested preferences of spring and fall females to determine whether they match the seasonal plasticity of male songs using single‐speaker phonotaxis experiments. We found that fall songs had a faster pulse rate, shorter pulse and interval durations, and a higher dominant frequency than spring songs. Female preferences shifted in parallel with male song plasticity, that is, spring females preferred the spring song and fall females the fall song. In addition, female responsiveness to male song was plastic as well, that is, fall females were significantly more responsive than spring females. The parallel plasticity of male songs and female preferences facilitates successful communication despite the environmentally induced variation. The potential origin and function of behavioral plasticity in G. rubens are discussed.  相似文献   

18.
Abstract. Male lesser wax moths, Achroia grisella (Fabricius) (Lepidoptera: Pyralidae: Galleriinae), produce both a pheromone and an ultrasonic acoustic signal that function in mate attraction. We describe the structure of the acoustic signal, in particular the interpulse intervals and the spectral properties of the pulses. The song consists of a train of ultrasonic pulses. The interpulse interval is usually bimodally distributed, but can sometimes be unimodal. This reflects variation in the duration of the up and down wing strokes. The pulses are also usually paired which can produce multimodality of the interpulse intervals. These paired pulses probably reflect wingbeat asynchrony because they are not found in males in which the signalling capability of one wing's sound producing structure is abolished.
The song's frequency spectrum has peaks at around 80 and 100 kHz. The first peak varies significantly with male size, with larger males producing a lower frequency peak. The second peak is associated with male age, with 1-day-old males producing songs with a lower frequency second peak. Thus the ultrasonic song of lesser wax moths is more complex in structure than previously reported and could provide potentially important cues to females. However, the ability of females to discriminate such detail is not known.  相似文献   

19.
本文报道庐山鸣鸣蝉自鸣声信息的长码与短码结构及其部分频谱的双倍频特征。庐山鸣鸣蝉多次重复的“MUYING……MUYING MU A”叫声,仅由三种信息MU(简称M),YING(I)及“A”重复编排而成。M与A的特征类似:持续时间大于170ms,波形具有约为6ms的周期,频谱主峰频率(MPF)约为4kHz,谱能量主要分布在2—7kHz频带内。这是鸣鸣蝉自鸣声长码的近似不变特征。长码I与M,A的不同点是持续期多在300ms以上,MPF为变频特征,在2.7—7.2kHz之间变化,谱能量较均匀地分布在0—14kHz频带内。约为6ms的准周期内含有几个频率不同的脉冲串(PT),这些不同频率的PT称为短码。这表明鸣鸣蝉自鸣声中长码是由变频短码组成的。M与A部分频谱具有双倍频特征,即构成频谱的子谱峰频率为两个倍频序列,其中一序列的共振峰为主峰,另一序列的共振峰为次峰。  相似文献   

20.
Throughout the range of the Scarlet Rosefinch, its territorial song consists of 3–9 (usually 4–5) elements, of which there are 5 different types. The differences lie in the way the pitch of the element changes in time (frequency "slope") and the width of the frequency band. Within a given type of song, the various elements can be present in almost any combination. Therefore, so many song types can be formed that the songs in even small parts of the species' area are clearly distinct from one another. Despite this capacity for variation, however, by chance identical songs may be sung in widely separated parts of the area, in some cases by different subspecies.
The species has not developed large-scale dialects or regiolects based on a song tradition acquired during an early imprinting phase. Scarlet Rosefinches tend to breed in small colonies, groups of up to about 15 pairs characterized by the same type of song (song neighbourhoods, formed by the development of a microlect).
Microlects develop by a founder effect. When males, near one-year old or older, join one another to form isolated colonies after arrival in the breeding region, they adopt ("learn") the song type that will eventually characterize the colony from the first male to arrive at the site. After the colony has been founded, in most cases each male uses only one type of song during a breeding season, with practically no variation of the temporal and frequency parameters.
Singing the same type of song, the members of a colony accept one another sufficiently to allow the breeding territories to be closely packed. It appears that a long-lasting capacity for acoustic learning, in combination with colony-like breeding and great ecological flexibility, has allowed the Scarlet Rosefinch to become the most successful species of the genus Carpodacus .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号