首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Song DH  Kang JH  Lee GS  Jeung EB  Yang MP 《Cytokine》2007,37(3):227-235
The aim of this study was to examine whether tumor necrosis factor (TNF)-alpha expression in the phagocytic activity of RAW macrophages by trans10-cis12 (10t-12c) conjugated linoleic acid (CLA) is associated with peroxisome proliferator-activated receptor gamma (PPARgamma) activation. 10t-12c CLA induced the TNF-alpha expression in RAW macrophages. Phagocytic activity of naive RAW macrophages was increased either by recombinant mouse (rm) TNF-alpha or by culture supernatant from 10t-12c CLA-treated RAW macrophages. This phagocytic activity was inhibited by addition of anti-rmTNF-alpha polyclonal antibody (pAb). 10t-12c CLA also increased the level of PPARgamma protein and mRNA in RAW macrophages. When naive RAW macrophages were incubated with the culture supernatant from RAW macrophages treated with 10t-12c CLA plus GW 9662, a PPARgamma antagonist, their phagocytic activity was significantly inhibited. In addition, GW 9662 antagonized the effect of 10t-12c CLA in stimulating TNF-alpha expression. These results suggest that 10t-12c CLA modulates the phagocytic activity of RAW macrophages by upregulating TNF-alpha expression via a PPARgamma-dependent pathway.  相似文献   

2.
3.
Cannabinoids have widespread effects on the cardiovascular system, only some of which are mediated via G-protein-coupled cell surface receptors. The active ingredient of cannabis, Delta9-tetrahydrocannabinol (THC), causes acute vasorelaxation in various arteries. Here we show for the first time that THC also causes slowly developing vasorelaxation through activation of peroxisome proliferator-activated receptors gamma (PPARgamma). In vitro, THC (10 microM) caused time-dependent vasorelaxation of rat isolated arteries. Time-dependent vasorelaxation to THC was similar to that produced by the PPARgamma agonist rosiglitazone and was inhibited by the PPARgamma antagonist GW9662 (1 microM), but not the cannabinoid CB1 receptor antagonist AM251 (1 microM). Time-dependent vasorelaxation to THC requires an intact endothelium, nitric oxide, production of hydrogen peroxide, and de novo protein synthesis. In transactivation assays in cultured HEK293 cells, THC-activated PPARgamma, transiently expressed in combination with retinoid X receptor alpha and a luciferase reporter gene, in a concentration-dependent manner (100 nM-10 microM). In vitro incubation with THC (1 or 10 microM, 8 days) stimulated adipocyte differentiation in cultured 3T3L1 cells, a well-accepted property of PPARgamma ligands. The present results provide strong evidence that THC is a PPARgamma ligand, stimulation of which causes time-dependent vasorelaxation, implying some of the pleiotropic effects of cannabis may be mediated by nuclear receptors.  相似文献   

4.
5.
6.
7.
Conjugated linoleic acid (CLA) refers to a mixture of naturally occurring positional and geometric isomers of linoleic acid that exist in dairy products and meat. The aim of the present work was to study the effects of c-9,t-11 and t-10,c-12 CLA isomers on body fat accumulation and serum lipids in hamsters fed an atherogenic diet. Hamsters were divided in four groups: one group was fed a chow diet (control) and the other three groups were given semi-purified atherogenic diets with 0.5% linoleic acid (LA), c-9,t-11 or t-10,c-12 CLA. Body weight and food intake were measured daily. After 6 weeks, adipose tissues from different anatomical locations and liver were dissected and weighed. Serum glucose, total cholesterol, HDL-c, LDL-c and triacylglycerol levels, as well as total and free cholesterol, triacylglycerol and phospholipid content in liver were determined by enzymatic methods. No differences in either energy intake or final body weight were found. The addition of t-10,c-12 CLA reduced fat accumulation and led to lower serum cholesterol, as compared with LA group. Nevertheless the level remained higher than in the control animals. The reduction in serum cholesterol was limited to LDL-c. This isomer also reduced triacylglycerol content in liver but did not modify serum triacylglycerol level. In summary, the present study demonstrates that t-10,c-12 CLA is the biologically active agent when anti-obesity and hypocholesterolaemic properties of CLA are considered. In contrast, the isomer c-9,t-11 has no effect on lipid metabolism in hamsters.  相似文献   

8.
Prostaglandin E(2) (PGE(2)), a major cyclooxygenase (COX-2) metabolite, plays important roles in tumor biology and its functions are mediated through one or more of its receptors EP1, EP2, EP3, and EP4. We have shown that the matrix glycoprotein fibronectin stimulates lung carcinoma cell proliferation via induction of COX-2 expression with subsequent PGE(2) protein biosynthesis. Ligands of peroxisome proliferator-activated receptor gamma (PPARgamma) inhibited this effect and induced cellular apoptosis. Here, we explore the role of the PGE(2) receptor EP2 in this process and whether the inhibition observed with PPARgamma ligands is related to effects on this receptor. We found that human non-small cell lung carcinoma cell lines (H1838 and H2106) express EP2 receptors, and that the inhibition of cell growth by PPARgamma ligands (GW1929, PGJ2, ciglitazone, troglitazone, and rosiglitazone [also known as BRL49653]) was associated with a significant decrease in EP2 mRNA and protein levels. The inhibitory effects of BRL49653 and ciglitazone, but not PGJ2, were reversed by a specific PPARgamma antagonist GW9662, suggesting the involvement of PPARgamma-dependent and -independent mechanisms. PPARgamma ligand treatment was associated with phosphorylation of extracellular regulated kinase (Erk), and inhibition of EP2 receptor expression by PPARgamma ligands was prevented by PD98095, an inhibitor of the MEK-1/Erk pathway. Butaprost, an EP2 agonist, like exogenous PGE(2) (dmPGE(2)), increased lung carcinoma cell growth, however, GW1929 and troglitazone blocked their effects. Our studies reveal a novel role for EP2 in mediating the proliferative effects of PGE(2) on lung carcinoma cells. PPARgamma ligands inhibit human lung carcinoma cell growth by decreasing the expression of EP2 receptors through Erk signaling and PPARgamma-dependent and -independent pathways.  相似文献   

9.
A group of polyunsaturated fatty acids called conjugated linoleic acids (CLAs) are found in ruminant products, where the most common isomers are cis9, trans11 (c 9,t11) and trans10, cis12 (t10,c12) CLA. A crude mixture of these isomers has been shown in animal studies to alter body composition by a reduction in body fat mass as well as an increase in lean body mass, with the t10,c12 isomer having the most pronounced effect. The objective of this study was to establish the molecular mechanisms by which t10,c12 CLA affects lipid accumulation in adipocytes. We have shown that t10,c12 CLA prevents lipid accumulation in human and mouse adipocytes at concentrations as low as 5 microM and 25 microM, respectively. t10,c12 CLA fails to activate peroxisome proliferator-activated receptor gamma (PPARgamma) but selectively inhibits thiazolidinedione-induced PPARgamma activation in 3T3-L1 adipocytes. Treatment of mature adipocytes with t10,c12 CLA alone or in combination with Darglitazone down-regulates the mRNA expression of PPARgamma as well as its target genes, fatty acid binding protein (aP2) and liver X receptor alpha (LXRalpha). Taken together, our results suggest that the trans10, cis12 CLA isomer prevents lipid accumulation in adipocytes by acting as a PPARgamma modulator.  相似文献   

10.
Conjugated linoleic acids (CLAs) were reported to have anti-atherogenic properties in animal feeding experiments. In an attempt to elucidate the molecular mechanisms of these anti-atherogenic effects, the modulatory potential of CLA on cytokine-induced eicosanoid production from smooth muscle cells (SMCs), which contributes to the chronic inflammatory response associated with atherosclerosis, has been investigated in the present study. cis-9, trans-11 CLA and trans-10, cis-12 CLA were shown to reduce proportions of the eicosanoid precursor arachidonic acid in SMC total lipids and to inhibit cytokine-induced NF-kappaB DNA-binding activity, mRNA levels of inducible enzymes involved in eicosanoid formation (cPLA2, COX-2, mPGES), and the production of the prostaglandins PGE2 and PGI2 by TNFalpha-stimulated SMCs in a dose-dependent manner. The effect of 50 micromol/L of either CLA isomer was as effective as 10 micromol/L of the PPARgamma agonist troglitazone in terms of inhibiting the TNFalpha-stimulated eicosanoid production by SMCs. PPARgamma DNA-binding activity was increased by both CLA isomers compared to control cells. Moreover, it was shown that the PPARgamma antagonist T0070907 partially abrogated the inhibitory action of CLA isomers on cytokine-induced eicosanoid production and NF-kappaB DNA-binding activity by vascular SMCs suggesting that PPARgamma signalling is at least partially involved in the action of CLA in human vascular SMCs. With respect to the effects of CLA on experimental atherosclerosis, our findings suggest that the anti-inflammatory effect of CLA is at least partially responsible for the anti-atherogenic effects of CLA observed in vivo.  相似文献   

11.
To characterize the specificity of synthetic compounds for peroxisome proliferator-activated receptors (PPARs), three stable cell lines expressing the ligand binding domain (LBD) of human PPARalpha, PPARdelta, or PPARgamma fused to the yeast GAL4 DNA binding domain (DBD) were developed. These reporter cell lines were generated by a two-step transfection procedure. First, a stable cell line, HG5LN, expressing the reporter gene was developed. These cells were then transfected with the different receptor genes. With the help of the three PPAR reporter cell lines, we assessed the selectivity and activity of PPAR agonists GW7647, WY-14-643, L-165041, GW501516, BRL49653, ciglitazone, and pioglitazone. GW7647, L-165041, and BRL49653 were the most potent and selective agonists for hPPARalpha, hPPARdelta, and hPPARgamma, respectively. Two PPAR antagonists, GW9662 and BADGE, were also tested. GW9662 was a selective PPARgamma antagonist, whereas BADGE was a low-affinity PPAR ligand. Furthermore, GW9662 was a full antagonist on PPARgamma and PPARdelta, whereas it showed partial agonism on PPARalpha. We conclude that our stable models allow specific and sensitive measurement of PPAR ligand activities and are a high-throughput, cell-based screening tool for identifying and characterizing PPAR ligands.  相似文献   

12.
Conjugated linoleic acid and atherosclerosis: studies in animal models   总被引:2,自引:0,他引:2  
Conjugated linoleic acids (CLA) are isomeric forms of linoleic acid (LA) containing two conjugated sites of unsaturation. The most abundant dietary form of CLA is the cis-9,trans-11 (c-9,t-11) isomer that is found in the fatty tissues and milk of ruminant animals. CLA can also be acquired by ingestion of supplements, which are usually equimolar mixtures of the c-9,t-11 and t-10,c-12 CLA. For more than a decade, the potential for CLA to modify atherosclerosis in animal models has been examined. However, to date, the studies have failed to reach consensus on whether CLA can be effective in reducing the incidence or severity of atherosclerotic lesions, or whether or not plasma lipid and lipoprotein levels can be improved with CLA supplementation. This review will examine the evidence for and against a role for CLA in atherosclerosis, with a focus on the rabbit, the hamster, and the apoE-deficient mouse.  相似文献   

13.
Adipose tissue is an active endocrine organ producing a variety of cytokines and chemokines, which may be involved in the deregulation of glucose and lipid homeostasis as well as in the inflammatory state observed in obesity. We have shown previously that differentiated human adipocytes secrete a variety of cytokines which are able to induce skeletal muscle insulin resistance. However, the regulation of these factors by anti-diabetic drugs has remained mainly undefined. Secretion of IL-6, IL-8, MIP-1alpha/beta, and MCP-1 by adipocytes was found to be downregulated by adiponectin. In parallel to adiponectin, the AMPK activator AICAR also decreased the secretion of most of the measured cytokines including IL-6 and MIP-1alpha/beta but not IL-8. In contrast, the thiazolidinedione troglitazone only slightly reduced cytokine secretion despite increasing the phosphorylation of AMPK. In conclusion, we show that adipocyte secretion is strongly inhibited by the anti-diabetic adipocyte hormone adiponectin, an effect that can also be mimicked by the AMPK activator AICAR. However, the PPARgamma agonist troglitazone is much less effective in reducing cytokine secretion.  相似文献   

14.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands inhibit cell proliferation and induce apoptosis in cancer cells. Here we wished to determine whether the PPARgamma ligand induces apoptosis and cell cycle arrest of the MDA-MB-231 cell, an estrogen receptor alpha negative breast cancer cell line. The treatment of MDA-MB-231 cell with PPARgamma ligands was shown to induce inhibition of cell growth in a dose-dependent manner as determined by MTT assay. Cell cycle analysis showed a G1 arrest in MDA-MB-231 cells exposed to troglitazone. An apoptotic effect by troglitazone demonstrated that apoptotic cells elevated by 2.5-fold from the control level at 10 microM, to 3.1-fold at 50 microM and to 3.5-fold at 75 microM. Moreover, troglitazone treatment, applied in a dose-dependent manner, caused a marked decrease in pRb, cyclin D1, cyclin D2, cyclin D3, Cdk2, Cdk4 and Cdk6 expression as well as a significant increase in p21 and p27 expression. These results indicate that troglitazone causes growth inhibition, G1 arrest and apoptotic death of MDA-MB-231 cells.  相似文献   

15.
The trans10,cis12 (t10c12) isomer of conjugated linoleic acid (CLA) has been shown to inhibit heparin-releasable lipoprotein lipase activity, reduce lipid stores in cultured 3T3-L1 adipocytes, and, when fed to mice, reduce body fat gain. We now report that t10c12 CLA significantly reduced leptin secretion from cultured 3T3-L1 adipocytes, and reduced leptin mRNA levels within the cells. Similar effects were produced by conjugated nonadecadienoic acid (a 19-carbon CLA cognate that is more effective than CLA in reducing body fat gain in mice), the lipoxygenase inhibitor nordihydroguaiaretic acid (which is synergistic with CLA in reducing body fat gain in mice), and ciglitazone (TZD, a PPARgamma agonist). Feeding mice diet supplemented with 0.5% t10c12 CLA for 4 weeks significantly reduced body fat gain, serum leptin levels and adipocyte leptin mRNA expression, without affecting feed intake or body weight. These data provide new insights into apparent mechanistic similarities among t10c12 CLA, CNA, NDGA, and TZD.  相似文献   

16.
Conjugated linoleic acids (CLAs) decrease fat deposition in mammals, including pigs. To determine mechanisms for CLA effects on adipocyte growth, porcine stromal-vascular cells (preadipocytes) were isolated and plated in medium containing 10% fetal bovine serum. After 24 h, differentiation factors (insulin + hydrocortisone + transferrin) were added. Oleic acid (200 microM) was added to some plates as a positive control. One of two isomers of CLA (50 microM cis 9, trans 11 or >50 microM trans 10, cis 12), or a mixture of the two isomers (25 microM each) was added to other plates. The cell number increased 7+ times in 7 days after initiation of differentiation, and was not different among treatment groups. By 7 days, Oil Red O-stained material (OROSM), expressed per cell, increased 10+ times in control cells and 64 times in oleic acid-treated cells. Addition of either isomer of CLA or the mixture caused OROSM/cell to increase 10+ times at 2 days, with no further increase at later times. In CLA-treated cells there was no increase in peroxisome proliferator-activated receptor gamma (PPARgamma) or lipoprotein lipase mRNA concentrations. The increased OROSM/cell may represent triacylglycerol synthesis from medium CLA using existing biosynthetic capacity or provision of a limiting ligand for PPARgamma already present. The results are different from those observed with rodent-derived clonal cells (3T3-L1 cells), wherein proliferation and differentiation are inhibited by CLAs, and the active isomer is trans 10, cis 12-CLA. The results suggest distinctions between clonal and primary preadipocytes, or species differences.  相似文献   

17.
We investigated the growth inhibitory effect of conjugated linoleic acid (CLA) on HepG2 (human hepatoma cell line), exploring whether the inhibitory action occurs via lipid peroxidation in the cells. When the cells were incubated up to 72 h with 5-40 microM of CLA (a mixture of 9c,11t-18:2 and 10t,12c-18:2), cell proliferation was clearly inhibited in a dose and time dependent manner but such an inhibition was not confirmed with linoleic acid (LA). In order to evaluate the possible contribution of lipid peroxidation exerted by CLA to cell growth inhibition, alpha-tocopherol (5-20 microM) and BHT (1-10 microM) as potent antioxidants were added to the medium with CLA (20 microM), which did not restore cell growth at all. Furthermore, after 72 h incubation, the membranous phospholipid hydroperoxide formation in the CLA-supplemented cells was suppressed respectively to 25% and 50% of that in LA-supplemented cells and control cells. No difference was observed by a conventional lipid peroxide assay, the TBA test, between CLA-supplemented cells and LA-supplemented cells. Although the cellular lipid peroxidation was not stimulated, lipid contents (triacylglycerol, total cholesterol and free cholesterol) and fatty acid contents (palmitic acid, palmitoleic acid and stearic acid) markedly increased in CLA-supplemented cells compared with LA-supplemented and control cells. Moreover, supplementation with 20 microM LA and 20 microM arachidonic acid profoundly interfered with the inhibitory effect of CLA in HepG2. These results suggest that the growth inhibitory effect of CLA on HepG2 is due to changes in fatty acid metabolism but not to lipid peroxidation.  相似文献   

18.
Peroxisome proliferator-activated receptor gamma (PPARgamma) is an important therapeutic drug target against several diseases such as diabetes, inflammation, dyslipidemia, hypertension, and cancer. Ligand binding to PPARgamma is responsible for controlling the biological functions, and developing new technology to measure ligand-PPARgamma binding is significant for both the function study of the receptor and ligand discovery. In this study, we exploited an efficient approach for the discovery of PPARgamma agonist and antagonist via a yeast two-hybrid system based on the fact that PPARgamma interacts with the coactivator CBP (CREP-binding protein) ligand-dependently. We employed the MEL1 reporter gene instead of the traditionally used LacZ gene to evaluate the protein-protein interactions by conducting a convenient alpha-galactosidase assay in the yeast strain AH109 with genes of PPARgamma-LBD (ligand-binding domain) and CBP N terminus introduced. With this built screening platform, the EC(50) values of the PPARgamma agonists rosiglitazone, troglitazone, pioglitazone, indomethacin, 15-deoxy-Delta12,14-prostaglandin J(2) (15d-PGJ(2)), and GI262570 were investigated, and the quantitatively antagonistic effect by IC(50) of the PPARgamma typical antagonist GW9662 on the rosiglitazone agonistic activity was fully examined. The reliability of this presented system evaluated by the comparable agreement of EC(50) and IC(50) values for the test compounds with the reported ones indicated that this yeast two-hybrid-based approach is powerful for PPARgamma agonist and antagonist screening. In addition, because this screening system is designed for use in a microtiter plate format where numerous chemicals could be readily screened, it is hoped that this yeast two-hybrid screening approach may be adaptable for high-throughput settings.  相似文献   

19.
Formation of macrophage-derived foam cells is a hallmark in earlier stages of atherosclerosis (AS). Increased cholesterol efflux from macrophage foam cells promote atherosclerotic regression. In the present study, lysophosphatidylcholine (LPC) promoting cholesterol efflux from macrophage foam cells was observed, and the mechanism underlying the action was investigated. Macrophage foam cells from mice were incubated with different concentrations of LPC (10, 20, 40, 80 microM), and the free cholesterol in medium increased but total intracellular cholesterol decreased. At the same time, the expression of PPARgamma, LXRalpha, ABCA1 was enhanced in a dose-dependent manner. The treatment of macrophage foam cells with 40 microM LPC for 12, 24 and 48 h promoted cellular cholesterol efflux in a time-dependent manner, meanwhile expression of PPARgamma, LXRalpha, ABCA1 was also raised respectively. Addition of different specific inhibitors of PPARgamma (GW9662), LXRalpha (GGPP), ABCA1 (DIDS) to the foam cells significantly suppressed LPC-induced cholesterol efflux. Also treatment with specific inhibitors of PPARgamma or LXRalpha decreased ABCA1 mRNA and protein expressions. LPC (40 microM)-induced cholesterol efflux was significantly lower in macrophage foam cells from apoE deficient mice than from normal C57BL/6J mice. In contrast, 10 microg apoAI-induced cholesterol efflux from foam cells remained in apoE deficient mice. The present results indicate that LPC promotes cholesterol efflux from macrophage foam cells via a PPARgamma-LXRalpha-ABCA1-dependent pathway. Furthermore, apoE may be involved in this process.  相似文献   

20.
Several amide constituents (piperlonguminine and retrofractamides A, B, and C) from the fruit of Piper chaba promoted adipogenesis of 3T3-L1 cells. Among them, retrofractamide A was the most active and significantly increased the amount of adiponectin released into the medium and the uptake of 2-deoxyglucose into the cells. Retrofractamide A also increased mRNA levels of adiponectin, peroxisome proliferator-activated receptor gamma2 (PPARgamma2), glucose transporter 4 (GLUT4), and insulin receptor substrate 1 (IRS-1), but did not act as a PPARgamma agonist different from troglitazone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号