首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Farnesylation of p21(ras) is an important step in the intracellular signaling pathway of growth factors, hormones, and immune stimulants. We synthesized a potent and selective farnesyltransferase inhibitor (LB42708) with IC(50) values of 0.8 nM in vitro and 8 nM in cultured cells against p21(ras) farnesylation and examined the effects of this inhibitor in the settings of inflammation and arthritis. LB42708 suppressed NF-kappaB activation and iNOS promoter activity by suppressing the I-kappaB kinase activity and I-kappaBalpha degradation. The inhibitor suppressed the expression of inducible NO synthase, cyclooxygenase-2, TNF-alpha, and IL-1beta and the production of NO and PGE(2) in immune-activated macrophages and osteoblasts as well as LPS-administrated mice. Furthermore, in vivo administration of LB42708 significantly decreased the incidence and severity of arthritis as well as mRNA expression of inducible NO synthase, cyclooxygenase-2, TNF-alpha, and IL-1beta in the paws of collagen-induced arthritic mice compared with controls. These observations indicate that the anti-inflammatory and antiarthritic effects of the farnesyltransferase inhibitor may be ascribed to the inhibition of I-kappaB kinase activity and subsequent suppression of NF-kappaB-dependent inflammatory gene expression through the suppression of p21(ras) farnesylation. Together, these findings reveal that the inhibitory effect of LB42708 on p21(ras)-dependent NF-kappaB activation may have potential therapeutic value for arthritis and other inflammatory diseases.  相似文献   

2.
Inhibition of receptor-bound urokinase by plasminogen-activator inhibitors   总被引:17,自引:0,他引:17  
Urokinase-type plasminogen activator (uPA) binds to a specific receptor on various cell types, the bound molecule retaining its enzymatic activity against plasminogen. We have now investigated whether receptor-bound uPA also retains the ability to react with and be inhibited by plasminogen activator inhibitors (PAI-1 and PAI-2). uPA bound to its receptor on human U937 monocyte-like cells was inhibited by PAI-1 (in its active form in the presence of vitronectin fragments) with an association rate constant of 4.5 x 10(6) M-1 s-1, which was 40% lower than that obtained for uPA in solution (7.9 x 10(6) M-1 s-1). The inhibition of uPA by PAI-2 was decreased to a similar extent by receptor binding, falling from 5.3 x 10(5) to 3.3 x 10(5) M-1 s-1. Stimulation of U937 cells with phorbol 12-myristate 13-acetate was accompanied by a further reduction in receptor-bound uPA inhibition by PAI-1 and PAI-2 to 1.7 x 10(6) and 1.1 x 10(5) M-1 s-1, respectively. These constants although lower than those for uPA in solution still represent rather rapid inhibition of the enzyme, and demonstrate that uPA bound to its specific cellular receptor remains available for efficient inhibition by PAI's, which may therefore play a major role in controlling cell-surface plasminogen activation and extracellular proteolytic activity.  相似文献   

3.
Inhibition of tumor cell invasion by verapamil.   总被引:3,自引:0,他引:3  
Verapamil, a calcium channel antagonist, inhibits murine B16 melanoma and colon adenocarcinoma C26 tumor metastasis by altering platelet aggregation [Tsuruo, T., et al. (1985) Cancer Chemother. Pharmacol., 14:30-33]. However, the role of calcium homeostasis in regulating several biochemical pathways implicated in other steps of the metastatic cascade suggests that calcium channel antagonists could also inhibit metastasis by other mechanisms. In this report, non-toxic doses of verapamil reversibly decreased human A375M and C8161 melanoma cell invasion and metastasis in a dose-dependent manner. Verapamil reduced cellular invasion and metastases by up to 96% (range 78-96%). Concomitantly, verapamil disrupts microtubule and microfilament organization and inhibits unidirectional cell migration but does not affect cellular adhesion to endothelial monolayers or reconstituted basement membranes. In addition, tumor cells treated with verapamil have a decrease in mRNA of type IV collagenase, a proteinase important in tumor cell degradation of basement membranes. Collectively, these data offer additional evidence regarding the mechanisms of action of verapamil as an anti-metastatic agent.  相似文献   

4.
Based on the enzyme specificity of matriptase, a type II transmembrane serine protease (TTSP) overexpressed in epithelial tumors, we screened a cDNA library expressing variants of the protease inhibitor eglin c in order to identify potent matriptase inhibitors. The most potent of these, R1K4′-eglin, which had the wild-type Pro45 (P1 position) and Tyr49 (P4′ position) residues replaced with Arg and Lys, respectively, led to the production of a selective, high affinity (Ki of 4 nM) and proteolytically stable inhibitor of matriptase. Screening for eglin c variants could yield specific, potent and stable inhibitors to matriptase and to other members of the TTSP family.  相似文献   

5.
The bacterial metalloproteinase thermolysin catalyzes the efficient activation of pro-urokinase to an active high-molecular-weight form of the protein. Thermolysin and plasmin convert pro-urokinase to enzymes of essentially equal activities in amidolytic assays, but with different molecular structures. The B-chains of the proteins produced by thermolysin and plasmin are of the same size (33 kDa) and have the same amino-terminal sequences, demonstrating that the cleavage of the Lys158-Ile159 bond of pro-urokinase is catalyzed by both enzymes. However, thermolysin also reacts at additional sites in the growth factor domain of the A-chain at nearly the same rate as that of the activation reaction. Polypeptides derived from hydrolyses of the Glu3-Leu4, Tyr24-Phe25, Asn27-Ile28 and Lys36-Phe37 bonds are recovered after reduction of the activated protein. The carboxy-terminus of the A-chain has been shown to be Arg-156, a consequence of proteolysis of the Arg156-Phe157 bond. In contrast to plasmin, thermolysin activates thrombin-inactivated pro-urokinase nearly as rapidly as it does the native zymogen. Thermolysin provides a useful alternative to plasmin for the catalytic activation and analysis of pro-urokinase, since the bacterial metalloproteinase is stable in solution and not susceptible to inhibition by aprotinin and other serine proteinase inhibitors.  相似文献   

6.
7.
The ability of leupeptin to block the degradation of receptor-bound human choriogonadotropin has been studied. It was found that this compound inhibited hormone degradation and intracellular cathepsin B activity in a parallel fasion, without affecting hormone-stimulated steroidogenesis.  相似文献   

8.
Phosphatase of regenerating liver 3 (PRL3) is overexpressed in a variety of tumors, and high levels of PRL3 expression are associated with tumorigenesis and metastasis. Consistent with an oncogenic role for PRL3, we show that ectopic PRL3 expression promotes cell proliferation and invasion. However, little is known about the molecular basis for PRL3 function. Obtaining this knowledge is vital for understanding PRL3-mediated disease processes and for the development of novel anticancer therapies targeted to PRL3. Here we report that up-regulation of PRL3 activates the Src kinase, which initiates a number of signal pathways culminating in the phosphorylation of ERK1/2, STAT3, and p130(Cas). The activation of these pathways likely contributes to the increased cell growth and motility of PRL3 cells. We provide evidence that PRL3 induces Src activation through down-regulation of Csk, a negative regulator of Src. Importantly, Src activation and Csk down-regulation are also observed in colon cancer cells expressing a higher level of PRL3. Thus, we have revealed a biochemical mechanism for the PRL3-mediated cell invasion and proliferation in which elevated PRL3 expression causes a reduction in Csk level, leading to Src activation.  相似文献   

9.
Apparent defects in cell polarity are often seen in human cancer. However, the underlying mechanisms of how cell polarity disruption contributes to tumor progression are unknown. Here, using a Drosophila genetic model for Ras-induced tumor progression, we show a molecular link between loss of cell polarity and tumor malignancy. Mutation of different apicobasal polarity genes activates c-Jun N-terminal kinase (JNK) signaling and downregulates the E-cadherin/beta-catenin adhesion complex, both of which are necessary and sufficient to cause oncogenic Ras(V12)-induced benign tumors in the developing eye to exhibit metastatic behavior. Furthermore, activated JNK and Ras signaling cooperate in promoting tumor growth cell autonomously, as JNK signaling switches its proapoptotic role to a progrowth effect in the presence of oncogenic Ras. Our finding that such context-dependent alterations promote both tumor growth and metastatic behavior suggests that metastasis-promoting mutations may be selected for based primarily on their growth-promoting capabilities. Similar oncogenic cooperation mediated through these evolutionarily conserved signaling pathways could contribute to human cancer progression.  相似文献   

10.
11.
BACKGROUND INFORMATION: Involvement of Notch1 signalling in several cancers is well known, but its role in human tongue squamous cell carcinoma, one of the most common carcinomas of the human oral cavity, remains poorly characterized. RESULTS: Our studies demonstrated that constitutively over-expressed active Notch1, via stable transfection of exogenous ICN (intracellular fragment of Notch), resulted in growth suppression of the human tongue cancer cell line Tca8113 in vitro and in vivo, accompanied by G(0)-G(1) cell cycle arrest and apoptosis. Moreover, down-regulation of beta-catenin protein expression was observed in Tca8113 cells stably expressing active Notch1. Activated Notch1 also led to dramatic increase in p21(WAF1/CIP1) and p53 expression with decreases in Skp2 (S-phase kinase-associated protein 2) and Bcl-2 (B-cell lymphocytic-leukaemia proto-oncogene 2) expression, which may participate in the induction of apoptosis and cell cycle arrest. CONCLUSIONS: Since the effects of the Notch1 pathway are cell-type specific and context-dependent in cell types where Notch1 has an anti-proliferative effect, down-regulation of Wnt/beta-catenin signalling may be one of the mechanisms which induces apoptosis and cell cycle arrest.  相似文献   

12.
Plasma kallikrein was found to be a good activator of pro-urokinase, the inactive zymogen form of urokinase. The complete activation of pro-urokinase by plasma kallikrein was obtained in 2 h with an enzyme/substrate weight ratio of 1/30. The rate of activation of pro-urokinase by plasma kallikrein was comparable to that catalyzed by plasmin and trypsin. The rate of activation of pro-urokinase by factor XIIa was approximately one-seventh of that by plasma kallikrein. The activation of the zymogen was due to the cleavage of a single internal peptide bond, resulting in the conversion of a single chain pro-urokinase (Mr = 55,000) into two-chain urokinase (Mr = 33,000 and 22,000), and these two chains were linked by a disulfide bond(s). These results indicate an important role of plasma kallikrein for the activation of pro-urokinase in the factor XII-dependent intrinsic pathway of fibrinolysis. Thrombin also converted pro-urokinase to a two-chain form that was not activatable by plasmin, plasma kallikrein, and factor XIIa. Thrombin specifically cleaved the Arg 156-Phe 157 bond which is located 2 residues prior to the activation site of Lys 158-Ile 159.  相似文献   

13.
Cyclosporin (CsA)4, a fungal peptide used clinically for its immunosuppressive properties, was investigated for its ability to antagonize the activation of macrophages (PEM) to the tumoricidal state. The acquisition of tumoricidal properties by PEM challenged with macrophage activating factor (MAF) plus lipopolysaccharide (LPS) was inhibited in a dose-dependent fashion by CsA. Similarly, CsA antagonized activation of PEM exposed to the calcium ionophore, A23187. CsA also inhibited macrophage-mediated tumor cell cytolysis in a dose-dependent manner. These data indicate that in vitro, CsA can modulate directly the acquisition and expression of tumoricidal properties by PEM and suggests that the macrophage may be an important target cell for CsA in vivo.  相似文献   

14.
Macrophages have a marked capacity to invade tissue in the course of cellular immune reactions that is thought to be based on the action of urokinase (u-PA). u-PA is an ubiquitous serine protease that converts the zymogen plasminogen into the active protease plasmin. u-PA binds to specific receptors on the macrophage thereby enabling the cell to degrade interstitial tissue in the microenvironment. Two cytokines produced in the course of cellular immune reactions, IFN-gamma and TNF-alpha, increase the number of u-PA receptors on human cultured monocytes from 14,000 to 64,000 and 30,000 receptors/cell, respectively. We used an amnion invasion assay to investigate whether activated human monocytes exhibit an enhanced capacity to invade interstitial tissue in correlation to the increased numbers of u-PA receptors. We show in this study that IFN-gamma, which increases the number of endogenously occupied and saturable u-PA receptors, causes a threefold increase of monocyte invasion into amnion tissue in comparison to control cells. The anti-u-PA mAb MPW5UK, which blocks the activity of u-PA, inhibits monocyte invasiveness significantly. In contrast, TNF-alpha, which increases only the number of saturable u-PA receptors on monocytes, does not enhance their invasiveness. This finding suggests that only endogenously occupied u-PA receptors are instrumental in monocyte invasiveness. This conclusion is further supported by the findings that: 1) saturation of monocytes with u-PA does not further increase their invasiveness and that 2) plasminogen-activator inhibitor-2, a specific inhibitor of u-PA associated with endogenously occupied, but not of u-PA bound to saturable receptors, inhibits monocyte invasiveness completely.  相似文献   

15.
In the present paper, we propose and study by numerical simulations a multiscale model for plant invasion based on allelopathic suppression in a homogeneous environment. The negative effects on seed production and germination, establishment and mortality of native plants generated by the root-secreted alien phytotoxin constitute the basic mechanism contributing to invasiveness. We obtained the invasion patterns, their success probabilities, the time evolution of plant populations, the gyration radius and the border roughness of the invaded region. As an important result, it was observed that, in addition to the phytotoxin nature (synthesis and degradation rates, diffusivity and phytotoxic threshold), invasive patterns and invasion success depend on the kind of native plants present in the area. In fact, both success and invasion speed decrease in the presence of resistant native plants. Also, self-affine invasion fronts are smooth (Hurst exponent H = 1) in the absence of resistant plants, but are rough (H ≠ 1) on the contrary. Furthermore, if the resistant native species are randomly distributed on the landscape, the invasion front exhibits long-range correlations (H ~ 0.76), while its border is anti-correlated (H ~ 0.20), if resistant plants are distributed in patches. Finally, the cluster size distribution functions of resistant plants are exponentials with characteristic cluster sizes increasing in time.  相似文献   

16.
17.

Background  

A polymorphism in the activating component of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex, neutrophil cytosolic factor 1 (NCF1), has previously been identified as a regulator of arthritis severity in mice and rats. This discovery resulted in a search for NADPH oxidase-activating substances as a potential new approach to treat autoimmune disorders such as rheumatoid arthritis (RA). We have recently shown that compounds inducing NCF1-dependent oxidative burst, e.g. phytol, have a strong ameliorating effect on arthritis in rats. However, the underlying molecular mechanism is still not clearly understood. The aim of this study was to use gene-expression profiling to understand the protective effect against arthritis of activation of NADPH oxidase in the immune system.  相似文献   

18.
19.
20.
《Phytomedicine》2014,21(3):348-355
Cyclooxygenase-2 (COX-2) plays an important role in the carcinogenesis and progression of gastric cancer. Harmine is reported as a promising drug candidate for cancer therapy; however, effects and action mechanism of harmine on the human gastric cancer cells remain unclear. This study evaluated the anti-tumor effects of harmine on human gastric cancer both in vitro and in vivo. The cell proliferation was determined using MTT colorimetric assay. Apoptosis was measured by DAPI staining and flow cytometry analysis. The wound healing and transwell invasion assays were performed to evaluate the effects of harmine on the migration and invasion of gastric cancer cells. The expression of COX-2, proliferating cell nuclear antigen (PCNA), Bcl-2, Bax and matrix metalloproteinase-2 (MMP-2) was detected by Western blot analysis. Our results showed that harmine significantly inhibited cellular proliferation, migration, invasion and induced apoptosis in vitro, as well as inhibited tumor growth in vivo. In addition, harmine significantly inhibited the expression of COX-2, PCNA, Bcl-2 and MMP-2 as well as increased Bax expression in gastric cancer cells. These results collectively indicate that harmine induces apoptosis and inhibits proliferation, migration and invasion of human gastric cancer cells, which may be mediated by down-regulation of COX-2 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号