首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Monomeric ferritin-insulin was used as an ultrastructural marker to determine by quantitative electron microscopy the time course and route of insulin uptake in rat adipocytes. To approximate steady state membrane binding conditions prior to any internalization, adipocytes were prefixed with glutaraldehyde and incubated for 30 min with 70 nM monomeric ferritin-insulin. Electron micrographs of these cells showed that the ferritin-insulin particles were predominantly in small groups of receptor sites on the plasma membrane and in pinocytotic-like invaginations of the plasma membrane. Significant amounts of ferritin-insulin were observed in cytoplasmic vesicles of unfixed cells as early as 2 min and in multivesicular bodies and lysosome-like structures within 5 to 10 min after the addition of the ligand. Ferritin-insulin accumulation reached steady state levels in the cytoplasmic vesicles in 5 to 10 min and in the lysosome-like structures in 15 min. Little ferritin-insulin was bound to coated pits, and the relative paucity of coated pits found in adipocytes suggested that these specialized endocytotic structures have a relatively insignificant role in insulin uptake in fat cells. Quantitative analysis of the uptake process suggested that a proportion of the insulin internalized by the cell may not be transported to lysosomes, but may be recycled along with the insulin receptor to the plasma membrane.  相似文献   

2.
The murine 3T3-L1 fibroblast under appropriate incubation conditions differentiates into an adipocyte phenotype. This 3T3-L1 adipocyte exhibits many of the morphologic, biochemical, and insulin-responsive features of the normal rodent adipocyte. Using quantitative electron microscopic (EM) autoradiography we find that, when 125I-insulin is incubated with 3T3-L1 adipocytes, the ligand at early times of incubation localizes to the plasma membrane of the cell preferentially to microvilli and coated pits. When the incubation is continued at 37 degrees C, 125I-insulin is internalized by the cells and preferential binding to the villous surface is lost. With the internalization of the ligand, two intracellular structures become labeled, as determined by the method of hypothetical grain analysis. These include large clear, presumably endocytotic, vesicles and multivesicular bodies. Over the first hour of incubation the labeling of these structures increases in parallel, but in the second hour they diverge: the labeling of multivesicular bodies and other lysosomal forms continuing to increase and the labeling of large clear vesicles decreasing. At 3 hours limited but significant labeling occurs in small Golgi-related vesicles that have the typical distribution of GERL. The distinct morphologic features of this cell make it ideal for a quantitative morphologic analysis and allow for an unambiguous view of the sequence of events involved in receptor-mediated endocytosis of a polypeptide hormone. These events are likely to be representative of the processing of insulin by the mature rodent adipocyte.  相似文献   

3.
A previous ultrastructural study showed that gold-labeled insulin (Au-I) and the non-hormonal ligand gold-labeled alpha-2-macroglobulin-methylamine (Au-alpha 2MGMA) underwent endocytosis by dissimilar cell surface structures on rat adipocytes. The present ultrastructural study compared the intracellular routes taken by these two ligands in adipocytes. Intracellular Au-alpha 2MGMA was initially found within apparent coated vesicles but Au-I was not, consistent with the previous demonstration that Au-alpha 2MGMA underwent endocytosis by coated pits whereas Au-I was internalized by uncoated micropinocytotic invaginations. Early in the endocytic pathway, the two ligands were segregated within separate small vesicles and tubulovesicles. Au-alpha 2MGMA was concentrated in a small number of these structures whereas Au-I was sparsely distributed among a relatively large number. Subsequently, the two endocytic pathways converged as the ligands intermingled within pale multivesicular bodies and lysosome-like structures. Au-I was less efficiently transferred to lysosomes than Au-alpha 2MGMA since a greater proportion of intracellular Au-I remained associated with small vesicles and tubulovesicles. This study indicates that early intracellular events in the endocytic pathways of insulin and alpha 2MGMA are distinct. These findings are discussed in light of the fundamentally dissimilar biological roles of these two molecules and the possible involvement of the endocytic pathway in the insulin signaling mechanism.  相似文献   

4.
The effect of chloroquine on the intralysosomal degradation of cell-coat glycoproteins in cultured intestinal absorptive cell was investigated by silver proteinate staining. The results of this staining method, which is specific for carbohydrate containing macromolecules such as glycoproteins and mucopolysaccharides, showed that in the presence of the drug considerable amounts of silver proteinate-positive material accumulated in one type of lysosome-like body: the dense bodies. The staining pattern of other cell organelles was not affected by chloroquine. The presence of the drug in the culture medium also resulted in the occurrence of numerous small vesicular structures in the matrix of the dense bodies. These showed a similar size and structure to those present in the other type of lysosome-like body: the multivesicular bodies. This observation, together with earlier autoradiographical data, suggests that cell-coat material is transferred from multivesicular to dense bodies by fusion between these organelles. This study thus provides further evidence for a regulatory mechanism of cell-coat glycoprotein transport by the lysosome-like bodies in human intestinal absorptive cells.  相似文献   

5.
After it interacts with a specific receptor on the cell surface, insulin is internalized in its target cell by an adsorptive endocytotic process and eventually degraded in lysosomes. It was also recently shown that the initial surface interaction between the hormone and its receptor is followed by an internalization of the receptor, which later is recycled back to the cell surface. In the present study the insulin receptor was tagged with a 125I-photoreactive insulin analogue that can be covalently coupled to the insulin receptor by ultraviolet irradiation. Using this tool we could trace by quantitative electron microscope autoradiography the intracellular pathway followed by this labeled receptor. The quantitative analysis of the intracellular distribution of the labeled material as a function of incubation time at 37 degrees C supports the following sequence of events: association first with clear vesicles, second with multivesicular bodies, third with dense bodies, and fourth, a return to the cell surface via clear vesicles. This insulin receptor recycling process is inhibited by monensin but unaffected by cycloheximide.  相似文献   

6.
In the course of spermiogenesis in the mouse, spermatid cytoplasm contains numerous membrane pits, vesicles and membranous tubules which are frequently anastomosed. Pale and dense multivesicular bodies (MVB) and secondary lysosome-like structures are also present in the cytoplasm. In order to study the pathway of non-specific adsorptive endocytosis in spermatids, cationic ferritin (CF) was directly microinjected into the lumen of seminiferous tubules, and added to germinal cell culture. Tissue and cultures were fixed at various time intervals after injection. Two-5 hr after microinjection of tracer, CF was found simultaneously in vesicles, tubules, MVB and in lysosome-like bodies present in spermatids at all steps of spermiogenesis. Various membranous components of the Golgi medulla, and the innermost transsaccule of the Golgi cortex were labelled simultaneously. In primary cultures of spermatids, the vesicles contained the marker 5 min after its deposition; 10 min after deposition, CF was evident in tubules; at 30 min, CF was present in pale MVB; at 1 hr, the dense MVB and lysosome-like bodies were labelled. Finally, at 2 hr 30 min, vesicles and tubules of the Golgi medulla contained CF grains. Apparently spermatids are very active cells in the process of adsorptive endocytosis throughout spermiogenesis. Endocytosis in spermatids is probably one of the mechanisms involved in the uptake of material used to build up spermatozoa components. The strong labelling of the Golgi region probably point to its role in recycling endocytosed membranes.  相似文献   

7.
Summary The effect of chloroquine on the intralysosomal degradation of cell-coat glycoproteins in cultured intestinal absorptive cells was investigated by silver proteinate staining. The results of this staining method, which is specific for carbohydrate containing macromolecules such as glycoproteins and mucopolysaccharides, showed that in the presence of the drug considerable amounts of silver proteinate-positive material accumulated in one type of lysosome-like body: the dense bodies. The staining pattern of other cell organelles was not affected by chloroquine. The presence of the drug in the culture medium also resulted in the occurrence of numerous small vesicular structures in the matrix of the dense bodies. These showed a similar size and structure to those present in the other type of lysosome-like body: the multivesicular bodies. This observation, together with earlier autoradiographical data, suggests that cell-coat material is transferred from multivesicular to dense bodies by fusion between these organelles. This study thus provides further evidence for a regulatory mechanism of cell-coat glycoprotein transport by the lysosome-like bodies in human intestinal absorptive cells.  相似文献   

8.
Concanavalin A (Con A) stimulates the production in starfish follicle cells of 1-methyladenine, a hormone which induces oocyte maturation. We have therefore investigated Con A-induced morphological changes and Con A-binding sites in the follicle cell using native Con A and horseradish peroxidase- or ferritin-labeled Con A (HRP-Con A, Fer-Con A). After isolated follicle cells were incubated with Con A (1 mg/ml), vacuoles, the Golgi complex and multivesicular body-like organelles (MVBs) became prominent in most of the cells. After follicle cells were prefixed and then incubated with Fer-Con A for 60 min, tagged ferritin was diffusely and randomly distributed as single or small clustered particles on the cell surface. The incubation of isolated follicle cells with Fer-Con A for 10 min before fixation resulted in numerous ferritin particles localized along the internalized membrane, and also in vacuoles, MVBs and small lysosome-like structures. After 60 min incubation with Fer-Con A, ferritin was further located in large lysosome-like structures and in vesicles near and in the Golgi area as well as in the organelles described above. HRP-Con A binding sites were also observed in vacuoles and MVBs of the intact cells.
These results suggest that Con A binds at first to the cell surface and causes rapid internalization and that membrane-bound Con A is easily endocytosed into vacuoles, MVBs and lysosome-like structures, and is later incorporated in some vesicles in the Golgi area.  相似文献   

9.
The intracellular transport and degradation of asialoorosomucoid (AOM) in isolated rat hepatocytes was studied by means of subcellular fractionation in Nycodenz gradients. The asialoglycoprotein was labelled by covalent attachment of a radioiodinated tyramine-cellobiose adduct ( [125I]TC) which leads to labelled degradation products being trapped intracellularly and thus serving as markers for the degradative organelles. The ligand was initially (1 min) in a slowly sedimenting (small) vesicle and subsequently in larger endosomes. Acid-soluble, radioactive degradation products were first found in a relatively light lysosome whose distribution coincided in the gradient with that of the larger endosome. Later (30 min) degradation products were found in denser lysosomes which banded in the same region of the gradient as the lysosomal enzyme, beta-acetylglucosaminidase. Colchicine, monensin and leupeptin all inhibited degradation of [125I]tyramine-cellobiose asialoorosomucoid ( [125I]TC-AOM) and reduced the formation of degradation products in both the light and the dense lysosomes. In presence of monensin and colchicine no undegraded ligand was seen in the dense lysosome, suggesting that uptake in these vesicles was inhibited. Leupeptin allowed accumulation of undegraded ligand in the dense lysosome. Therefore, transfer from light to dense lysosomes is not dependent on degradation as such. In the presence of monensin two peaks of undegraded ligand were found in the gradients. It seems possible that in the monensin-sensitive endosomes, dissociation of the ligand-receptor complex is inhibited, allowing ligand to recycle with the receptors in small vesicles.  相似文献   

10.
Label-fracture immunochemistry and pre-embedding indirect immunocytochemistry were applied to investigate insulin uptake by endothelial cells. Freeze fracture replicas showed that a small percentage of native insulin receptors are associated with non-coated pits (4%) and coated pits (2%). After warming, receptor bound insulin became increasingly associated with such endocytotic vesicles. After 2 min the percentage of detectable insulin associated with non-coated and coated pits increased to 16% and 8%, respectively. Pre-embedding immunocytochemical localization of insulin gave results consistent with those obtained from the label-fracture studies. Both non-coated and coated vesicles appeared labelled after 5 min of warming. Non-coated vesicles contained 25% of the cell associated insulin while 9% was associated with coated pits and vesicles. After 10 min of warming, 9% of label was located in non-coated vesicles and 7% in coated vesicles. A large proportion (29%) of the label was found in tubular-vesicular endosomes at this time. After 15 min of warming, 30% of the remaining cell-associated gold label was found in multivesicular bodies. These experiments demonstrate that insulin uptake by endothelium is mediated by both coated and non-coated vesicles and that, once internalized, insulin is routed through endosomal pathways that primarily result in transcytosis.  相似文献   

11.
The hypothesis that insulin is internalized into the hepatic Golgi apparatus was tested by the diaminobenzidine-shift protocol of Courtoy et al. (1984, J. Cell Biol. 98, 870). Highly purified Golgi fractions were isolated after the coinjection of [125I]insulin and the synthetic ligand, galactose-bovine serum albumin-horseradish peroxidase. Golgi fractions were subsequently reacted in the presence or absence of diaminobenzidine, then subjected to Percoll gradient centrifugation. For incubations carried out in the absence of diaminobenzidine, [125I]insulin-containing components were found at a low density (peak density congruent to 1.042) identical to that of the Golgi marker enzyme galactosyltransferase. However after incubations carried out in the presence of diaminobenzidine, the majority of [125I]insulin-containing components was shifted to a higher density of greater than 1.06 while that of galactosyltransferase remained unchanged (peak congruent to 1.042). These observations indicate that the majority of internalized insulin is not located in galactosyltransferase-containing Golgi components.  相似文献   

12.
Ultrastructure and acid phosphatase activity of aged calls of Euglena granulata are reported. Cells are spherical, quiescent, and nonflagellated. The most conspicuous attribute of aged cells is the accumulation of cyloplasmic vacuoles and lysosome-like structures containing heavily stained, pigmented bodies and membrane fragments. In chloroplasts, portions of whorled lamellae arc abscised and subsequently incorporated into lysosome-like structures; osmiophilic granules increase in number. Membranes surrounding eyespot granules disappear and the granules themselves become diffuse; the usual association with microtubules is not seen in aged cells. Acid phosphatase precipitation accumulates largely at the maturing face of dictyosomes and associated vesicles; there is also activity in multivesicular and lysosome-like vacuoles.  相似文献   

13.
Degradation of 125I-labelled HDL ([125I]HDL) was measured in isolated rat hepatocytes that had been preincubated with [125I]HDL and then reincubated in fresh medium without [125I]HDL. About 5 % of the [125I]HDL associated with the cells in advance were degraded per hour at 37 °C. This in vitro degradation was inhibited about 50% by lysosomal inhibitors such as chloroquine, ammonia and leupeptin. Depolymerization of microtubuli by colchicine inhibited the degradation of [125I]HDL to about 65–75 % of the control cells. Cytochalasin B (CB), a destabilizer of microfilaments, had a less marked effect on the degradation in vitro. Degradation of [125I]HDL associated with cells in vivo after intravenous injection was also studied in isolated cells. About 8.5% of the [125I]HDL associated with the cells in vivo were degraded per hour in the isolated cells. The effects of ammonia, chloroquine, leupeptin and colchicine on HDL degradation were similar for [125I]HDL taken up in vivo and in vitro. Subcellular fractionation by centrifugation in sucrose gradients indicated that [125I]HDL associated with hepatocytes in vivo are primarily accumulated in lysosomes. [125I]HDL associated with the cells in vitro are located in organelles whose distribution coincides with that of 5′-nucleotidase. These organelles may be endocytic vesicles. It is concluded that the internalization of [125I]HDL in rat hepatocytes is relatively slow. The intracellular degradation of the apoproteins of HDL is at least partly lysosomal.  相似文献   

14.
Using a 125I-photoreactive insulin analogue that can be covalently coupled to its receptor we have shown that in rat hepatocytes the insulin receptor is concomitantly internalized with the labeled hormone and afterwards is progressively recycled back to the cell surface. In the course of the internalization process the insulin-receptor complex associates with clear vesicles and later on with lysosomes from which it is recycled through clear vesicles. On the basis of these observations it is suggested that modulation of the rates of internalization and of recycling of the insulin receptor can regulate the number of available surface insulin receptors. This hypothesis is supported by the results of experiments showing that monensin, an inhibitor of receptor recycling enhances insulin induced loss of its own surface receptors (down regulation) in U-937 monocytes.  相似文献   

15.
Capillary endothelium can actively regulate vascular permeability of various serum proteins. Hormones such as insulin must interact with this capillary barrier in order to reach their respective target tissues. We have studied the binding and subsequent internalization of 125I-insulin in both native (freshly isolated) and primary cultured capillary endothelium derived from rat epididymal fat pads. Insulin association with the endothelium, internalization and degradation differed between freshly isolated and primary cultured capillaries. Specific binding in freshly isolated and cultured capillaries was temperature dependent, and was competitively inhibited in the presence of unlabelled insulin. Primary cultures of capillaries grown to confluence did not exhibit specific binding of insulin. Despite the lack of specific receptors for insulin, cultured cells vesicularly internalized insulin. Greater than 50% of the total associated insulin was not degraded by cultured endothelium. Morphological examinations using ferritin labelled insulin localized insulin associated to the capillary endothelial cell membrane and sequestered within pinocytotic vesicles. Incubation of freshly isolated capillaries with insulin stimulated the fluid phase endocytosis of 14C-sucrose; however, insulin had no effect on fluid phase endocytosis in cultured capillaries. These results indicate that capillary endothelium, isolated from rat epididymal fat, exhibit specific receptors for insulin. Binding of insulin to the capillary membrane is followed by internalization into cytoplasmic vesicles and partial degradation.  相似文献   

16.
Summary The routes for adsorptive and receptor-mediated endocytosis were studied in vivo after microinjection of tracers into the lumen of the seminiferous tubules, and in vitro in isolated germ cells of different mammals. Cationic ferritin was located on the plasma membrane, in vesicles, in tubules, in multivesicular bodies and in lysosome-like granules of mouse spermatocytes. In these cells the number of multivesicular bodies varied during spermatogenesis. Spermatids and to a lesser extent residual bodies also performed adsorptive endocytosis. In the rat and monkey (Macaca fascicularis) diferric transferrin was specifically taken up by germ cells via receptor-mediated endocytosis. The labelling was observed subsequently in membrane pits, vesicles, endosome-like bodies and pale multivesicular bodies. A progressive decrease in the frequency of the labelling of the germ cells by transferrin-gold particles was observed from spermatogonia to spermatocytes and to early spermatids, which could indicate that iron is particularly required by germ cells during the mitotic and meiotic processes. Adsorptive and receptor-mediated endocytosis therefore occurs in all classes of germ cells. These endocytic processes are most probably required for germ cell division, differentiation and metabolism.  相似文献   

17.
本实验用酶细胞化学和示踪细胞化学方法观察了睾丸间质细胞中多泡体的形成过程及其与溶酶体的关系。实验结果表明,睾丸间质细胞中多泡体的形成可分三个阶段:首先,一些含内吞物质的泡状结构进入高尔基体区域,与那里的小泡融合,形成内含少量小泡的前多泡体;然后,前多泡体互相融合,形成体积较大、基质电子密度低、内含小泡排列稀疏的低电子密度多泡体;最后,低电子密度多泡体通过表面长出微绒毛样结构并不断断裂的方式去除多余的界膜,形成体积较小、基质电子密度高、内含小泡排列紧密的高电子密度多泡体。因此,多泡体的形成既与内吞活动有关,又与高尔基体区域小泡有关。前多泡体和低电子密度多泡体不含溶酶体酶。在多泡体形成过程中,只有到高电子密度多泡体阶段,才与溶酶体发生关系,从溶酶体中获取溶酶体酶。多泡体形成后,常与自体吞噬泡靠近,可能参与睾丸间质细胞的自体吞噬活动。  相似文献   

18.
Complete inhibition of transferrin recycling by monensin in K562 cells   总被引:17,自引:0,他引:17  
Monensin blocks human transferrin recycling in a dose-dependent and reversible manner in K562 cells, reaching 100% inhibition at a noncytocidal dose of 10(-5) M, whereas transferrin recycling is virtually unaffected by noncytocidal doses of chloroquine. The intracellular pathway of human transferrin in K562 cells, both in the presence and absence of 10(-5) M monensin, was localized by indirect immunofluorescence. Monensin blocks transferrin recycling by causing internalized ligand to accumulate in the perinuclear region of the cell. The effect of 10(-5) M monensin on human transferrin kinetics was quantitatively measured by radioimmunoassay and showed a positive correlation with immunofluorescent studies. Immunoelectron microscopic localization of human transferrin as it cycles through K562 cells reveals the appearance of perinuclear transferrin-positive multivesicular bodies within 3 min of internalization, with subsequent exocytic delivery of the ligand to the cell surface via transferrin-staining vesicles arising from these perinuclear structures within 5 min of internalization. Inhibition of ligand recycling with 10(-5) M monensin causes dilated transferrin-positive multivesicular bodies to accumulate within the cell with no evidence of recycling vesicles. A coordinated interaction between multivesicular bodies and the Golgi apparatus appears to be involved in the recycling of transferrin in K562 cells. Cell-surface-binding sites for transferrin were reduced by 50% with 10(-5) M monensin treatment; however, this effect was not attenuated by 80% protein synthesis inhibition with cycloheximide, supporting the idea that the transferrin receptor is also recycled through the Golgi.  相似文献   

19.
When hepatocytes were freshly isolated from rat liver and incubated for various periods of time at 37 degrees C, the media from the incubation, when completely separated from the cells, actively degraded 125I-insulin. THis soluble protease activity was strongly inhibited by bacitracin but was unaffected by the lysosomatropic agent ammonium chloride (NH4Cl). When hepatocytes were incubated with 125I-insulin at 37 degrees C in the presence or absence of 8 mM NH4Cl the ligand initially bound to the plasma membrane and was subsequently internalized as a function of time. When hepatocytes were incubated at 37 degrees C for 30 minutes with 125I-insulin in the presence of bacitracin and NH4Cl or bacitracin alone and the cells were washed, diluted, and the cell-bound radioactivity allowed to dissociate, the percent intact 125I-insulin in the cell pellet and in the incubation media was greater in the presence of NH4Cl at each time point of incubation. Under these same conditions a higher proportion of the cell-associated radioactivity was internalized and a higher proportion was associated with lysosomes. The data suggest that receptor-mediated internalization is required for insulin degradation by the cell, and that this process, at least in part, involves lysosomal enzymes. Furthermore, the data demonstrate that internalization is not blocked by the presence of bacitracin or NH4Cl in the incubation media, but that degradation is inhibited.  相似文献   

20.
Summary The occurrence of endocytotic mechanisms in human small intestinal absorptive cells was investigated by culturing biopsy specimens in the presence of horseradish peroxidase (HRP), lactoperoxidase (LPO), and ferritin. The results indicate that both HRP and LPO entered the cells by apical endocytosis, after which they were transported via apical vesicles and tubules to the lysosome-like bodies. Ferritin, which showed a distinct affinity for the cell-coat glycoproteins, was not interiorized by the absorptive cells.These findings suggest that although human absorptive cells have an endocytotic mechanism, possibly fluid-phase endocytosis, cell-coat glycoproteins are not taken up by the cells, as indicated by the absence of ferritin in the apical vesicles and tubules, as well as the lysosome-like bodies. These findings provide indirect support for our hypothesis that the lysosome-like bodies have a function in the regulation of cell-coat glycoprotein transport via a crinophagic mechanism (fusion of apical vesicles and tubules with lysosome-like bodies) rather than via an exocytotic-endocytotic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号