首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucose-stimulated and pancreatic islet beta cell-specific expression of the insulin gene is mediated in part by the C1 DNA-element binding complex, termed RIPE3b1. In this report, we define the molecular weight range of the protein(s) that compose this beta cell-enriched activator complex and show that protein phosphatase treatment inhibits RIPE3b1 DNA binding activity. Fractionation of beta cell nuclear extracts by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that RIPE3b1 binding was mediated by a protein(s) within the 37-49-kDa ranges. Direct analysis of the proteins within the RIPE3b1 complex by ultraviolet light cross-linking analysis identified three binding species of approximately 51, 45, and 38 kDa. Incubating beta cell nuclear extracts with either calf alkaline phosphatase or a rat brain phosphatase preparation dramatically reduced RIPE3b1 DNA complex formation. Phosphatase inhibition of RIPE3b1 binding was prevented by sodium pyrophosphate, a general phosphatase inhibitor. We discuss how changes in the phosphorylation status of the RIPE3b1 activator may influence its DNA binding activity.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Protein tyrosine phosphatase 1B (PTP1B) attenuates insulin signaling by catalyzing dephosphorylation of insulin receptors (IR) and is an attractive target of potential new drugs for treating the insulin resistance that is central to type II diabetes. Several analogues of cholecystokinin(26)(-)(33) (CCK-8) were found to be surprisingly potent inhibitors of PTP1B, and a common N-terminal tripeptide, N-acetyl-Asp-Tyr(SO(3)H)-Nle-, was shown to be necessary and sufficient for inhibition. This tripeptide was modified to reduce size and peptide character, and to replace the metabolically unstable sulfotyrosyl group. This led to the discovery of a novel phosphotyrosine bioisostere, 2-carboxymethoxybenzoic acid, and to analogues that were >100-fold more potent than the CCK-8 analogues and >10-fold selective for PTP1B over two other PTP enzymes (LAR and SHP-2), a dual specificity phosphatase (cdc25b), and a serine/threonine phosphatase (calcineurin). These inhibitors disrupted the binding of PTP1B to activated IR in vitro and prevented the loss of tyrosine kinase (IRTK) activity that accompanied PTP1B-catalyzed dephosphorylation of IR. Introduction of these poorly cell permeant inhibitors into insulin-treated cells by microinjection (oocytes) or by esterification to more lipophilic proinhibitors (3T3-L1 adipocytes and L6 myocytes) resulted in increased potency, but not efficacy, of insulin. In some instances, PTP1B inhibitors were insulin-mimetic, suggesting that in unstimulated cells PTP1B may suppress basal IRTK activity. X-ray crystallography of PTP1B-inhibitor complexes revealed that binding of an inhibitor incorporating phenyl-O-malonic acid as a phosphotyrosine bioisostere occurred with the mobile WPD loop in the open conformation, while a closely related inhibitor with a 2-carboxymethoxybenzoic acid bioisostere bound with the WPD loop closed, perhaps accounting for its superior potency. These CCK-derived peptidomimetic inhibitors of PTP1B represent a novel template for further development of potent, selective inhibitors, and their cell activity further justifies the selection of PTP1B as a therapeutic target.  相似文献   

15.
Protein tyrosine phosphatase 1B is a key factor in the negative regulation of insulin pathway and a promising target for treatment of diabetes and obesity. Herein, a series of competitive inhibitors were optimized from oleanolic acid, a natural triterpenoid identified against PTP1B by screening libraries of traditional Chinese medicinal herbs. Modifying at 3 and 28 positions, we obtained compound 13 with a K(i) of 130 nM, which exhibited good selectivity between other phosphatases involved in insulin pathway except T-cell protein tyrosine phosphatase. Further evaluation in cell models illustrated that the derivatives enhanced insulin receptor phosphorylation in CHO/hIR cells and also stimulated glucose uptake in L6 myotubes with or addition of without insulin.  相似文献   

16.
Insulin-receptor phosphotyrosyl-protein phosphatases.   总被引:1,自引:0,他引:1       下载免费PDF全文
Calmodulin-dependent protein phosphatase has been proposed to be an important phosphotyrosyl-protein phosphatase. The ability of the enzyme to attack autophosphorylated insulin receptor was examined and compared with the known ability of the enzyme to act on autophosphorylated epidermal-growth-factor (EGF) receptor. Purified calmodulin-dependent protein phosphatase was shown to catalyse the complete dephosphorylation of phosphotyrosyl-(insulin receptor). When compared at similar concentrations, 32P-labelled EGF receptor was dephosphorylated at greater than 3 times the rate of 32P-labelled insulin receptor; both dephosphorylations exhibited similar dependence on metal ions and calmodulin. Native phosphotyrosyl-protein phosphatases in cell extracts were also characterized. With rat liver, heart or brain, most (75%) of the native phosphatase activity against both 32P-labelled insulin and EGF receptors was recovered in the particulate fraction of the cell, with only 25% in the soluble fraction. This subcellular distribution contrasts with results of previous studies using artificial substrates, which found most of the phosphotyrosyl-protein phosphatase activity in the soluble fraction of the cell. Properties of particulate and soluble phosphatase activity against 32P-labelled insulin and EGF receptors are reported. The contribution of calmodulin-dependent protein phosphatase activity to phosphotyrosyl-protein phosphatase activity in cell fractions was determined by utilizing the unique metal-ion dependence of calmodulin-dependent protein phosphatase. Whereas Ni2+ (1 mM) markedly activated the calmodulin-dependent protein phosphatase, it was found to inhibit potently both particulate and soluble phosphotyrosyl-protein phosphatase activity. In fractions from rat liver, brain and heart, total phosphotyrosyl-protein phosphatase activity against both 32P-labelled receptors was inhibited by 99.5 +/- 6% (mean +/- S.E.M., 30 observations) by Ni2+. Results of Ni2+ inhibition studies were confirmed by other methods. It is concluded that in cell extracts phosphotyrosyl-protein phosphatases other than calmodulin-dependent protein phosphatase are the major phosphotyrosyl-(insulin receptor) and -(EGF receptor) phosphatases.  相似文献   

17.
Reversible protein phosphorylation of serine, threonine, and tyrosine residues by protein kinases and phosphatases is important for the regulation of cellular signal transduction and controls many cellular functions. Disturbances in this regulation have been implicated in a growing number of diseases, making kinases and phosphatases useful targets for therapeutic intervention. The suitability of surface plasmon resonance (SPR) technology has been widely demonstrated in many drug discovery applications. A novel and straightforward methodology is presented for analyzing small molecule binding to two serine/threonine phosphatases, PP1 and PP2B (calcineurin), and to the prototypic tyrosine phosphatase, PTP1B. Emphasis was placed on investigating the immobilization conditions of the phosphatases by using reducing conditions, inhibitors and metal ions. A comparison of inhibitor binding, either to phosphatase (PP2B) alone or in complex with the regulatory protein subunit calmodulin, revealed different kinetics. The methodology was also used to test inhibitor specificity toward different phosphatases. Inhibition of regulatory protein PP-inhibitor-2 binding to PP1 by a small molecule inhibitor was demonstrated. This type of information, together with data on compound binding that is independent of enzyme activity and in which affinities are resolved into kinetic rate constants, may be of great significance for the development of highly specific and high-affinity phosphatase inhibitors.  相似文献   

18.
Sun G  Markwell J 《Plant physiology》1992,100(2):620-624
Protein phosphatase activity in crude leaf extracts and in purified intact chloroplasts of wheat (Triticum aestivum) and pea (Pisum sativum) was analyzed using exogenously supplied phosphoproteins or endogenous thylakoid proteins. Leaf extracts contain readily detectable amounts of protein phosphatase activity measured with either phosphohistone or phosphorylase a, substrates of mammalian protein phosphatases. No significant chloroplast protein phosphatase activity was detected using these exogenous phosphoproteins. The dephosphorylation of endogenous thylakoid light-harvesting chlorophyll a/b binding proteins in situ was inhibited by fluoride, but not by microcystin-LR or okadaic acid, diagnostic inhibitors of mammalian types 1 and 2A protein phosphatases. Additionally, no evidence for a pea chloroplast alkaline phosphatase activity was found using β-glycerolphosphate or 4-methylum-belliferyl phosphate as substrates. From these results, we conclude that phosphohistone and phosphorylase a are not useful substrates for chloroplast thylakoid protein phosphatase activity and that the chloroplast enzymes may not fit into one of the canonical classifications currently used for protein phosphatases.  相似文献   

19.
20.
《The Journal of cell biology》1996,135(6):1471-1483
Recent evidence suggests that secretory vesicle formation from the TGN is regulated by cytosolic signaling pathways involving small GTP- binding proteins, heterotrimeric G proteins, inositol phospholipid metabolism, and protein serine/threonine phosphorylation. At the cell surface, protein phosphorylation and dephosphorylation on tyrosine residues can rapidly modulate cytosolic signaling pathways in response to extracellular stimuli and have been implicated in the internalization and sorting of signaling receptors. to determine if phosphotyrosine metabolism might also regulate secretory vesicle budding from the TGN, we treated permeabilized rat pituitary GH3 cells with inhibitors of either tyrosine phosphatases or tyrosine kinases. We demonstrate that the tyrosine phosphatase inhibitors pervanadate and zinc potently inhibited budding of nascent secretory vesicles. Tyrphostin A25 (TA25) and other tyrosine kinase inhibitors also prevented secretory vesicle release, suggesting that vesicle formation requires both phosphatase and kinase activities. A stimulatory peptide derived from the NH2 terminus of the small GTP-binding protein ADP ribosylation factor 1 (ARF1) antagonized the inhibitory effect of TA25, indicating that both agents influence the same pathway leading to secretory vesicle formation. Antiphosphotyrosine immunoblotting revealed that protein tyrosine phosphorylation was enhanced after treatment with tyrosine phosphatase or kinase inhibitors. Subcellular fractionation identified several tyrosine phosphorylated polypeptides of approximately 175, approximately 130, and 90-110 kD that were enriched in TGN-containing Golgi fractions and tightly membrane associated. The phosphorylation of these polypeptides correlated with inhibition of vesicle budding. Our results suggest that in endocrine cells, protein tyrosine phosphrylation and dephosphorylation are required for secretory vesicle release from the TGN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号