首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipid composition of plasma lipoproteins and erythrocyte ghost membranes has been studied in 16 healthy normolipidaemic subjects and in 16 patients affected by primary lipoprotein lipase deficiency, resulting in severe chylomicronaemia and in cholesterol-depleted low-density lipoproteins and high-density lipoproteins. A significant decrease in membrane cholesterol/phospholipid ratio was observed in lipoprotein lipase deficient patients compared to controls (3.27 +/- 0.33 vs. 3.95 +/- 0.50, mean +/- S.D.; P less than 0.0001). There was also an increase in the erythrocyte membrane phosphatidylcholine/sphingomyelin ratio in lipoprotein lipase deficient patients compared to controls (1.53 +/- 0.10 vs. 1.05 +/- 0.13; P less than 0.0001) due to a concurrent increase in phosphatidylcholine and decrease in sphingomyelin relative concentrations in these patients. Erythrocyte ghost membrane fluidity was determined by fluorescence anisotropy and found to be higher in membranes from lipoprotein lipase deficient patients. This increase in membrane fluidity can be attributed in part to changes in membrane cholesterol and phospholipid concentrations in response to abnormal plasma lipoprotein composition.  相似文献   

2.
Rats fed a diet deficient in essential fatty acids have a low level of serum very low density lipoproteins (VLDL). It was found that after intraperitoneal injection of heparin, deficient rats had a higher level of lipoprotein lipase activity in their plasma than did normal rats. VLDL isolated from serum of normal and deficient rats were compared as substrates for postheparin lipase of rat plasma. There was no significant difference in V(max) between the two preparations of lipoproteins, but the apparent K(m) for lipoproteins from deficient animals was significantly less than that for normal animals. These observations suggest that the low concentration of VLDL in deficient rats may be explained (a) by an increased activity of lipoprotein lipase in the tissues of these animals and (b) by the VLDL of deficient rats being more rapidly hydrolyzed at low concentrations by lipoprotein lipase than VLDL from normal rats.  相似文献   

3.
The plasma lipoproteins of the Zucker fatty rat were characterized with respect to lipid and apoprotein composition, and results were compared with those obtained from lean controls. Information on apoproteins was obtained from gel filtration experiments and electrophoresis on polyacrylamide gels. Very low density lipoproteins (VLDL) were increased several-fold in fatties, and 78% of their mass was triglycerides compared with 60% in the controls. Low density (LDL) and high density (HDL) lipoproteins were increased by a factor of 2, although their compositions were similar to those of the controls. Levels of apoVLDL, apoLDL, and apoHDL were five, two and two times higher, respectively, in the fatties, and the two most rapidly moving subunit peptides on polyacrylamide gels were disproportionately elevated in the apoproteins. The slower of these two bands was present in relatively greater amounts than the faster one in fatties. If the slower peptide is an activator of lipoprotein lipase, analogous to the comparable subunit peptides of human apolipoproteins, plasmas of fatties could contain up to 10 times more lipase activator activity than control plasma. This finding, and the fact that adipose tissue lipoprotein lipase activity of fatties was about 150% of controls, suggests that fatties have increased capacities for VLDL catabolism. We have previously shown that hepatic VLDL secretory rates are higher than normal in these animals. The increased capacity for catabolism may be a response to the altered secretory rates.  相似文献   

4.
Oral nicotine induces an atherogenic lipoprotein profile   总被引:3,自引:0,他引:3  
Male squirrel monkeys were used to evaluate the effect of chronic oral nicotine intake on lipoprotein composition and metabolism. Eighteen yearling monkeys were divided into two groups: 1) Controls fed isocaloric liquid diet; and 2) Nicotine primates given liquid diet supplemented with nicotine at 6 mg/kg body wt/day. Animals were weighed biweekly, plasma lipid, glucose, and lipoprotein parameters were measured monthly, and detailed lipoprotein composition, along with postheparin plasma lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) activity, was assessed after 24 months of treatment. Although nicotine had no effect on plasma triglyceride or high density lipoproteins (HDL), the alkaloid caused a significant increase in plasma glucose, cholesterol, and low density lipoprotein (LDL) cholesterol plus protein while simultaneously reducing the HDL cholesterol/plasma cholesterol ratio and animal body weight. Levels of LDL precursors, very low density (VLDL) and intermediate density (IDL) lipoproteins, were also lower in nicotine-treated primates while total postheparin lipase (LPL + HTGL) activity was significantly elevated. Our data indicate that long-term consumption of oral nicotine induces an atherogenic lipoprotein profile (increases LDL, decreases HDL/total cholesterol ratio) by enhancing lipolytic conversion of VLDL to LDL. These results have important health implications for humans who use smokeless tobacco products or chew nicotine gum for prolonged periods.  相似文献   

5.
Hepatic lipase: new insights from genetic and metabolic studies.   总被引:18,自引:0,他引:18  
Hepatic lipase catalyses the hydrolysis of triglycerides and phospholipids in all major classes of lipoproteins. Genetic deficiency of this enzyme is associated with a unique plasma lipoprotein profile, characterized by hypertriglyceridemia and elevated concentrations of intermediate density lipoproteins and HDL. Recent studies have identified common polymorphisms in the hepatic lipase gene that are associated with low hepatic lipase activity and increased concentrations of large HDL. Association studies using these polymorphisms are elucidating the effects of variation in hepatic lipase activity on plasma lipoprotein concentrations and susceptibility to coronary atherosclerosis.  相似文献   

6.
We have studied the cholesteryl ester transfer between HDL and VLDL in cyclophosphamide-treated rabbits, in order to explain the abnormal cholesteryl ester partition between these two lipoprotein classes. The hypertriglyceridemia caused by treatment with the drug was associated with cholesteryl ester- and triacylglycerol-rich VLDL and with HDL poor in esterified cholesterol but relatively enriched in triacylglycerol. These two lipoprotein classes were characterized by their chemical composition and by gel filtration chromatography. VLDL particles were slightly larger in size, compared with controls. Different transfer combinations were envisaged between these abnormal lipoproteins and control ones. The transfer study involved the plasma fraction of d greater than 1.21 g/ml containing the cholesteryl ester transfer protein (CETP). It appeared that the chemical composition of lipoproteins was responsible for the level of cholesteryl ester transfer between lipoproteins. Actually, when the cholesteryl ester acceptor lipoproteins (VLDL) were enriched in triacylglycerol, the transfer was enhanced. Therefore, the effect of lipolysis on the transfer has also been explored. Lipoprotein lipase seemed to enhance the transfer of cholesteryl ester from HDL to VLDL when these lipoproteins were normal, but an important decline was obtained when triacylglycerol-rich VLDL were lipolyzed. This study defines the relationship between lipoprotein chemical composition and transfer activity of cholesteryl ester from HDL to VLDL.  相似文献   

7.
The structure and the metabolism of plasma lipoproteins are altered in diabetes mellitus. Insulin or oral agent treatments affect the lipoprotein metabolism in addition to improving hyperglycemia. However, it is not clear whether the alterations seen in lipoproteins during treatment are related to the degree of diabetic control or to the mode of diabetic treatment. The effects of insulin or oral agent treatments on the plasma lipoproteins and lipoprotein lipase activator were compared in a strictly defined non-obese, non-insulin dependent diabetic patient. Both treatment groups had similar plasma triglyceride, total cholesterol, low and high density lipoprotein cholesterol, and lipoprotein lipase activator levels. Lipoprotein lipase activator contents of the very low density lipoproteins correlated positively with their triglyceride (r = 0.803 in insulin, r = 0.828 in oral agent treated patients) and protein (r = 0.713 in insulin, r = 0.862 in oral agent treated patients) contents. The findings of this study indicated that plasma lipid levels, very low density lipoprotein compositions, and lipoprotein lipase activator contents were not significantly different in non-obese, non-insulin dependent diabetic patients treated with either oral hypoglycemic agents or insulin.  相似文献   

8.
Chronic alcohol intake is associated with an increase in fasting plasma high density lipoproteins (HDL). To study alcohol's acute effects on plasma lipoproteins, we measured plasma lipoprotein concentrations and activities of postheparin plasma lipases in nine normolipemic males after ingestion of 40 g of ethanol (as whiskey). After alcohol there was no change in lipoprotein lipase activity but hepatic lipase was decreased to 67% of baseline at 6 hr. There were associated increases in HDL phospholipids (12 mg/dl) and cholesterol (10 mg/dl) resulting in prominence of larger, lipid-enriched HDL particles. Changes were most pronounced in the HDL3 and HDL2a subclasses. Very low density lipoprotein (VLDL) phospholipids and cholesterol were also increased by 13 and 9 mg/dl, respectively, with no significant change in triglycerides. Changes in lipoproteins and lipase were largely reversed 10 hr after alcohol intake. The transient increases in VLDL and HDL lipids after alcohol may result in part from acute inhibition of hepatic lipase activity. The results suggest a role of hepatic lipase in the catabolism of phospholipids of VLDL and possibly HDL.  相似文献   

9.
Rabbit antiserum was prepared against purified bovine mild lipoprotein lipase. Immunoelectrophoresis of lipoprotein lipase gave a single precipitin line against the antibody which was coincident with enzyme activity. The gamma-globulin fraction inhibited heparin-releasable lipoprotein lipase activity of bovine arterial intima, heart muscle and adipose tissue. The antibody also inhibited the lipoprotein lipase activity from adipose tissue of human and pig, but not that of rat and dog. Fab fragments were prepared by papain digestion of the gamma-globulin fraction. Fab fragments inhibited the lipoprotein lipase-catalyzed hydrolysis of dimyristoylphosphatidylcholine vesicles and trioleoylglycerol emulsions to the same extent. The Fab fragments also inhibited the lipolysis of human plasma very low density lipoproteins. The change of the kinetic parameters for the lipoprotein lipase-catalyzed hydrolysis of trioleoylglycerol by the Fab fragments was accompanied with a 3-fold increase in Km and a 10-fold decrease in Vmax. Preincubation of lipoprotein lipase with apolipoprotein C-II, the activator protein for lipoprotein lipase, did not prevent inhibition of enzyme activity by the Fab fragments. However, preincubation with dipalmitoylphosphatidylcholine-emulsified trioleoylglycerol or Triton X-100-emulsified trioleoylglycerol had a protective effect (remaining activity 7.0 or 25.8%, respectively, compared to 1.0 or 0.4% with no preincubation). The addition of both apolipoprotein C-II and substrate prior to the incubation with the Fab fragments was associated with an increased protective effect against inhibition of enzyme activity; remaining activity with dipalmitoylphosphatidylcholine-emulsified trioleoylglycerol was 40.6% and with Triton X-100-emulsified trioleoylglycerol, 45.4%. Human plasma very low density lipoproteins also protected against the inhibition of enzyme activity by the Fab fragments. These immunological studies suggest that the interaction of lipoprotein lipase with apolipoprotein C-II in the presence of lipids is associated with a conformational change in the structure of the enzyme such that the Fab fragments are less inhibitory. The consequence of a conformational change in lipoprotein lipase may be to facilitate the formation of an enzyme-triacylglycerol complex so as to enhance the rate of the lipoprotein lipase-catalyzed turnover of substrate to products.  相似文献   

10.
Mechanisms responsible for hypertriglyceridemia in Tangier disease were elucidated by an analysis of the plasma post-heparin lipolytic activities and the structural and metabolic properties of very low (VLDL) and low (LDL) density lipoproteins. The levels of lipoprotein lipase activity in six Tangier patients were significantly lower (P less than 0.001) than in 40 control subjects (8.1 +/- 3.3 (+/- S.D.) vs. 14.1 +/- 3.7 units/ml). In contrast, the levels of hepatic triacylglycerol lipase were higher (P less than 0.01) than in normal controls (14.4 +/- 3.9 vs. 9.3 +/- 4.0 units/ml). Because kinetic parameters such as Km or Vmax cannot be obtained with naturally occurring triacylglycerol-rich lipoproteins, the pseudo-first-order rate constant (k1) of triacylglycerol hydrolysis was used to assess the effectiveness of triacylglycerol-rich lipoproteins as substrates for lipoprotein lipase. The k1 values for Tangier VLDL (k1 = 0.017 +/- 0.002 min-1) were significantly lower (P less than 0.001) than the k1 values (0.036 +/- 0.008 min-1) for control VLDL. Both the Tangier and control LDL2 are similar in their resistance to the action of lipoprotein lipase, as shown by their low k1 values (0.002 +/- 0.001 and 0.001 +/- 0.001 min-1, respectively). The major compositional difference between the lipoproteins of Tangier disease and normal subjects was a significant increase in the percent content of apolipoprotein A-II in all lipoprotein particles with d less than 1.063 g/ml, with the greatest increase occurring in VLDL and the lowest in LDL2. These results were interpreted as indicating that, in Tangier disease, there is a lower reactivity of VLDL with lipoprotein lipase which may in part be attributed to the abnormal apolipoprotein composition. This finding, in conjunction with the reduced levels of lipoprotein lipase activity, may explain the hypertriglyceridemia in Tangier disease.  相似文献   

11.
Hepatic lipase (HL) is a key player in lipoprotein metabolism by modulating, through its lipolytic activity, the triglyceride (TG) and phospholipid content of apolipoprotein B (apoB)-containing lipoproteins and of high density lipoproteins (HDL), thereby affecting their size and density. A new and separate role has been suggested for HL in cellular lipoprotein metabolism, in which it serves as a ligand promoting cellular uptake of apoB-containing remnant lipoproteins and HDL. We tested the hypothesis that HL has both a lipolytic and a nonlipolytic role in human lipoprotein metabolism, by measuring lipid plasma concentrations, lipoprotein density distribution by density gradient ultracentrifugation, and lipoprotein composition, in three subjects with HL deficiency: two of the patients (S-1 and S-3) were characterized as having neither plasma HL activity nor detectable HL protein; the third subject (S-2) had no plasma HL activity but a detectable amount (35.5 ng/ml) of HL protein. All HL-deficient subjects showed a severalfold increase in lipoprotein TG content across the lipoprotein density spectrum [very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), low density lipoprotein (LDL), and HDL] as compared with control subjects. They also had remarkably more buoyant LDL particles (LDL-R(f) = 0.342;-0.394) as compared with the control subjects (LDL-R(f) = 0.303). Subjects S-1 and S-3 (no HL activity or protein) presented with a distinct increase in cholesterol and apoB levels in the IDL and VLDL density range as compared with patient S-2, with detectable HL protein, and the control subjects.This study provides evidence in humans that HL indeed plays an important role in lipoprotein metabolism independent of its enzymatic activity: in particular, inactive HL protein appears to affect VLDL and IDL particle concentration, whereas HL enzymatic activity seems to influence VLDL-, IDL-, LDL-, and HDL-TG content and their physical properties.  相似文献   

12.
The objective of this investigation was to test the hypothesis that the diabetes-induced reduction in lipoprotein lipase activity in cardiac myocytes may be due to hypertriglyceridemia. Administration of 4-aminopyrazolopyrimidine (50 mg/kg) to control rats for 24 h reduced plasma triacylglycerol levels and increased the heparin-induced release of lipoprotein lipase into the incubation medium of cardiac myocytes. The acute (3-5 days) induction of diabetes by streptozotocin (100 mg/kg) produced hypertriglyceridemia and reduced heparin-releasable lipoprotein lipase activity in cardiac myocytes. Treatment of diabetic rats with 4-aminopyrazolopyrimidine resulted in a fall in plasma triacylglycerol content and increased heparin-releasable lipoprotein lipase activity. Administration of Triton WR-1339 also resulted in hypertriglyceridemia, but the heparin-induced release of lipoprotein lipase from control cardiac myocytes was not reduced in the absence of lipolysis of triacylglycerol-rich lipoproteins. Treatment with Triton WR-1339 did, however, increase the heparin-induced release of lipoprotein lipase from diabetic cardiac myocytes. Preparation of cardiac myocytes with 0.9 mM oleic acid resulted in a decrease in both total cellular and heparin-releasable lipoprotein lipase activities. These results suggest that the diabetes-induced reduction in heart lipoprotein lipase activity may, at least in part, be due to an inhibitory effect of free fatty acids, derived either from lipoprotein degradation or from adipose tissue lipolysis, on lipoprotein lipase activity in (and (or) release from) cardiac myocytes.  相似文献   

13.
We have demonstrated that low and high density lipoproteins from monkey plasma are capable of accepting and accumulating monoacylglycerol that is formed by the action of lipoprotein lipase on monkey lymph very low density lipoproteins. Furthermore, the monoacylglycerol that accumulates in both low and high density lipoproteins is not susceptible to further hydrolysis by lipoprotein lipase but is readily degraded by the monoacylglycerol acyltransferase of monkey liver plasma membranes. These observations suggest a new mechanism for monoacylglycerol transfer from triacylglycerol rich lipoproteins to other lipoproteins. In addition, the finding that monoacylglycerol bound to low and high density lipoprotein is degraded by the liver enzyme but not lipoprotein lipase lends support to the hypothesis that there are distinct and consecutive extrahepatic and hepatic stages in the metabolism of triacylglycerol in plasma lipoproteins.  相似文献   

14.
Following its secretion into the plasma compartment, the high-density lipoprotein (HDL) is presumed to be acted upon by both soluble enzymes, such as lecithin:cholesterol acyltransferase (LCAT), and membrane-associated enzymes, such as lipoprotein lipase and hepatic lipase. Rats were injected intravenously with heparin to release membrane-associated lipolytic activities into the circulation and the collected plasma was incubated overnight at 37 degrees C in the presence or absence of an LCAT inhibitor or an inhibitor of lipoprotein lipase (1 M NaCl). It was observed that lipoprotein lipase accounted for most of the triglyceride hydrolase activity in the heparin-treated plasma, and that the heparin-releasable activities caused an increase in HDL density but no measurable change in particle size when LCAT was inhibited. Heparin treatment caused about a 60% decrease in plasma triacylglycerol during the interval between injection of heparin and blood collection. Although this caused marked compositional changes in the d less than 1.063 g/ml lipoproteins, no changes were observed in the lipid composition or apoprotein distribution in the HDL. Subsequent incubation for 18 h at 37 degrees C produced marked increases in the apoE content of HDL from heparin-treated plasma even when LCAT was inhibited. Time-course studies showed that in the presence of an LCAT inhibitor there was considerable conversion of phosphatidylcholine to lysophosphatidylcholine in heparin-treated plasma, and that this activity was diminished by 1 M NaCl, but that no phospholipolysis was observed in control plasma. By contrast, both heparin-treated and control plasma possessed substantial triglyceride hydrolase activity. The concurrent action of lipases and LCAT was observed to reduce the maximum level of cholesterol esterification which could be achieved in the absence of lipase activity. It is concluded that changes in HDL particle size are mainly attributable to LCAT, but that lipase activities, which are either free in rat plasma or releasable by heparin, play a role in restructuring the phospholipid moiety and altering the protein composition of the HDL, especially with respect to apoE, a potential ligand to cellular receptors.  相似文献   

15.
Hepatic lipase deficiency produces significant distortion in the plasma lipoprotein profile. Particles with reduced electrophoretic mobility appear in very low density lipoprotein (VLDL). Intermediate density lipoprotein (IDL) increases markedly in the circulation and plasma low density lipoprotein (LDL) levels fall. At the same time there is a mass redistribution within the high density lipoprotein (HDL) spectrum leading to dominance in the less dense HDL2 subfraction. The present study examines apolipoprotein B turnover in a patient with hepatic lipase deficiency. The metabolism of large and small very low density lipoproteins was determined in four control subjects and compared to the pattern seen in the patient. Absence of the enzyme did not affect the rate at which large very low density lipoproteins were converted to smaller particles within this density interval (i.e., of VLDL). However, subsequent transfer of small very low density lipoproteins to intermediate density particles was retarded by 50%, explaining the abnormal accumulation of VLDL in the patient's plasma. Despite this, intermediate density particles accumulated to a level 2.4-times normal because their subsequent conversion to low density lipoprotein has been almost totally inhibited. Consequently, the plasma concentration of low density lipoprotein was only 10% of normal. On the basis of these observations, hepatic lipase appears to be essential for the conversion of small very low density and intermediate density particles to low density lipoproteins. The pathways of direct plasma catabolism of these species were not affected by the enzyme defect. In vitro studies were performed by adding purified hepatic lipase to the patient's plasma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Lipoprotein lipase and hepatic lipase were measured in rat plasma using specific antisera. Mean values for lipoprotein lipase in adult rats were 1.8-3.6 mU/ml, depending on sex and nutritional state. Values for hepatic lipase were about three times higher. Lipoprotein lipase activity in plasma of newborn rats was 2-4-times higher than in adults. In contrast, hepatic lipase activity was lower in newborn than in adult rats. Following functional hepatectomy there was a progressive increase in lipoprotein lipase activity in plasma, indicating that transport of the enzyme from peripheral tissues to the liver normally takes place. Lipoprotein lipase, but not hepatic lipase, increased in plasma after a fat meal. An even more marked increase, up to 30 mU/ml, was seen after intravenous injection of Intralipid. Plasma lipase activity decreased in parallel with clearing of the injected triacylglycerol. 125I-labeled lipoprotein lipase injected intravenously during the hyperlipemia disappeared somewhat slower from the circulation than in fasted rats, but the uptake was still primarily in the liver. Hyperlipemia, or injection of heparin, led to increased lipoprotein lipase activity in the liver. This was seen even when the animals had been pretreated with cycloheximide to inhibit synthesis of new enzyme protein. These results suggest that during hypertriglyceridemia lipoprotein lipase binds to circulating lipoproteins/lipid droplets which results in increased plasma levels of the enzyme and increased transport to the liver.  相似文献   

17.
No significant change in plasma levels of total cholesterol (TC), triglycerides, phospholipids, very-low-density lipoprotein cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), lipase activity and TC/HDL-C ratio could be observed in both normotensive and hypertensive individuals after cod liver oil supplementation. Measure of platelet aggregation rates did not also show any significant change after cod liver oil ingestion in both normotensive and hypertensive individuals. The results suggest that supplementation of normal diets with 600 mg cod liver oil per day for 50 days neither affects plasma lipids, lipoproteins and lipase activity nor affects platelet aggregation in both normotensive and hypertensive individuals.  相似文献   

18.
《Insect Biochemistry》1986,16(3):517-523
Lipoprotein lipase activity in flight muscle homogenates of Locusta migratoria was measured, using natural radiolabelled lipoproteins as substrates. The flight specific lipoprotein A+ (or low density lipophorin) stimulated lipoprotein lipase activity several-fold compared to the resting lipoprotein Ay (or high density lipophorin). However, with the high mol. wt lipoprotein fraction OAKH as a substrate, lipase activity was even doubled compared to lipoprotein A+. Lipase activity was not increased in flight muscle homogenates of insects which had flown. Neither adipokinetic hormone, nor octopamine had any direct effect on lipoprotein lipase activity. Aspects of hormonal regulation and apoprotein activation of the locust flight muscle lipoprotein lipase are discussed and compared with the model for vertebrate lipoprotein lipase.  相似文献   

19.
The relationship between the genes controlling heart and adipose lipoprotein lipase in fasted animals has been studied. 32 inbred mouse strains were tested for variations in heart or adipose specific activity and thermolability. The survey revealed that specific activity of heart and adipose lipoprotein lipase varied as much as 3-fold and 20-fold, respectively. In thermolability, up to a 2-fold variation was observed in the lipase in each tissue. The correlation coefficient between variations in heart and adipose lipase was apparently not significant for both parameters studied. Additional studies were performed in two strains, BALB/c and C57BL/6, along with the recombinant inbred set derived from them. The two strains did not show genetic variation for lipoprotein lipase thermolability, although the inactivation rate of heart lipase was higher than that of adipose lipase. However, BALB/c and C57BL/6 displayed significant differences in their levels of lipoprotein lipase specific activity. Thus, strain C57BL/6 showed higher heart activity when compared to BALB/c, whereas the latter showed higher adipose lipase activity when compared to C57BL/6, i.e. an inverse relationship. The specific activity levels of heart and adipose lipoprotein lipase in the recombinant inbred strains derived from BALB/c and C57BL/6 exhibited independent inheritance. Thus, in adipose tissue, a single major gene seems to control the variation observed, while the inheritance pattern of heart activity could imply involvement of more than one gene. Moreover, two out of the seven recombinant strains showed distinct recombinant phenotypes, indicating that separate unlinked genes control the variations found in heart and adipose activity. We conclude that the expression of heart and adipose lipoprotein lipase activity is under independent genetic control.  相似文献   

20.
Statins are hypolipidemic drugs which not only improve cholesterol but also triglyceride levels. Whereas their cholesterol-reducing effect involves inhibition of de novo biosynthesis of cellular cholesterol through competitive inhibition of its rate-limiting enzyme 3-hydroxy-3-methylglutaryl CoA reductase, the mechanism by which they lower triglycerides remains unknown and forms the subject of the current study. Treatment of normal rats for 4 days with simvastatin decreased serum triglycerides significantly, whereas it increased high density lipoprotein cholesterol moderately. The decrease in triglyceride concentrations after simvastatin was caused by a reduction in the amount of very low density lipoprotein particles which were of an unchanged lipid composition. Simvastatin administration increased the lipoprotein lipase mRNA and activity in adipose tissue and heart. This effect on lipoprotein lipase was accompanied by decreased mRNA as well as plasma levels of the lipoprotein lipase inhibitor apolipoprotein C-III. These results suggest that the triglyceride-lowering effect of statins involves a stimulation of lipoprotein lipase-mediated clearance of triglyceride-rich lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号