首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precursor forms of the glycoprotein tissue inhibitor of metalloproteinases (TIMP) synthesized by human fibroblasts in culture have been identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of specific immunoprecipitates. Translation of mRNA extracted from fibroblasts in the cell-free rabbit reticulocyte lysate system yielded a single immunoprecipitable precursor of tissue inhibitor of metalloproteinases, Mr 22 000. Intact fibroblasts cultured in the presence of tunicamycin synthesized an Mr 20 000 form of tissue inhibitor of metalloproteinases, detectable intracellularly and extracellularly. This is in contrast to the predominantly intracellular Mr 24 000.form synthetized during monensin treatment of cells and the normal secreted form of tissue inhibitor of metalloproteinases, Mr 29 000. Isoelectric focusing of the various immunoprecipitable precursor forms showed a progressive increase in positive charge and microheterogeneity of the protein during cellular processing. The data suggest that the inhibitor protein core, of basic pI, is glycosylated initially by the addition of mostly neutral sugars and subsequently by acidic sugars, prior to secretion.  相似文献   

2.
The processing pathway of the major envelope glycoprotein complex, gp55-116 (gB), of human cytomegalovirus was studied using inhibitors of glycosylation and endoglycosidases. The results of these studies indicated that the mature gp55-116 is synthesized by the addition of both simple and complex N-linked sugars to a nonglycosylated precursor of estimated Mr 105,000. In a rapid processing step, the Mr 105,000 precursor is glycosylated to a protein of Mr 150,000 (gp150) which contains only endoglycosidase H-sensitive sugar linkages. The gp150 is then processed relatively slowly to a Mr 165,000 to 170,000 species (gp165-170), which is then cleaved to yield the mature gp55-116. Monensin prevented the final processing steps of the gp150, including cleavage, suggesting that transport through the Golgi apparatus is required for complete processing. Digestion of the intracellular forms of this complex as well as the virion forms confirmed the above findings and indicated that the mature virion form of gp55 contains 8,000 daltons of N-linked sugars. The virion gp116 contains some 52,000 to 57,000 daltons of N-linked carbohydrates and approximately 5,000 daltons of O-linked sugars.  相似文献   

3.
Rabbit synovial fibroblasts induced to undergo a specific switch in gene expression by agents that alter cell morphology secreted the neutral proteinase precursor procollagenase (apparent Mr of 53,000 and 57,000). A major Mr = 51,000 polypeptide that was always induced coordinately with procollagenase has now been identified as the proenzyme form of a metal-dependent proteinase active at neutral pH. We have named this proteinase stromelysin. Prostromelysin and procollagenase were the most prominent [35S]methionine-labeled secreted proteins of the induced fibroblasts. By the use of casein degradation as an assay for enzyme activity, stromelysin was isolated with high yield from the conditioned culture medium of 12-O-tetradecanoylphorbol 13-acetate-treated fibroblasts and migrated as an active form of Mr = 21,000 that was immunologically identical to the proteoglycan-degrading proteinase purified from rabbit bone. Immunoglobulin G from antiserum raised to purified rabbit bone proteoglycanase immunoprecipitated the Mr = 51,000 proenzyme form from conditioned medium of induced rabbit cells and also immunoprecipitated an Mr = 55,000 polypeptide from induced human fibroblasts. When rabbit prostromelysin was activated by trypsin or 4-aminophenylmercuric acetate, the proenzyme was converted to an active form of Mr = 41,000. During the course of the purification, prostromelysin was converted to an additional activatable form of Mr = 35,000 and additional active forms of Mr = 21,000-25,000, which had related peptide maps distinct from collagenase. All of these forms were immunologically cross-reactive. Purified stromelysin degraded casein, cartilage proteoglycans, fibronectin, alpha 1-proteinase inhibitor, and immunoglobulin G2a and had limited activity on laminin, elastin, type IV collagen, and gelatin, but did not degrade type I collagen. Stromelysin was inhibited by EDTA, 1,10-phenanthroline, and the specific glycoprotein tissue inhibitor of metalloproteinases isolated from human amniotic fluid and was therefore classified as a metalloproteinase.  相似文献   

4.
Biosynthesis of the glycoprotein tissue inhibitor of metalloproteinases (TIMP) by human fibroblasts in culture has been characterized by functional assays, immunoprecipitation, and immunocytochemistry with a monospecific antiserum. As determined by radiolabeling with [35S]methionine, immunoprecipitation, and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the secreted form of TIMP had an Mr of 29,000, whereas the form associated with the cell layer had an Mr of 24,000. Unstimulated human lung fibroblasts (HFL-1) secreted TIMP at the rate of approximately 2 micrograms/10(6) cells/24 h, and normal foreskin fibroblasts (HS 27) and skin fibroblasts from a patient with Hurler's disease (GM 1391) secreted TIMP at 0.3 and 0.2 micrograms/10(6) cells/24 h, respectively. Secretion of TIMP was stimulated up to 10-fold by treating the cells with 20-100 ng/ml of 12-O-tetradecanoylphorbol 13-acetate or 10 units/ml of human interleukin 1. In the stimulated HFL-1 cells, TIMP accounted for 0.03-0.09% of the total [35S]methionine incorporated into protein, and 0.3-0.8% of the [35S]methionine in secreted protein. Although TIMP accounted for a relatively small proportion of total protein synthesis of the fibroblasts, greater than 80% of untreated and greater than 95% of stimulated fibroblasts synthesized TIMP, as determined by indirect immunofluorescence. The treatments of the human fibroblasts that increased TIMP secretion also induced synthesis and secretion of proenzyme forms of collagenase, indicating that degradative enzymes and their controlling inhibitors may be synthesized in parallel under certain conditions.  相似文献   

5.
Precursor forms of lactase-phlorizin hydrolase, sucrase-isomaltase and aminopeptidase N were studied by pulse-labelling of organ-cultured human intestinal biopsies. After labelling the biopsies were fractionated by the Ca2+-precipitation method and the enzymes isolated by immunoprecipitation. The results indicate that the lactase-phlorizin hydrolase is synthesized as a Mr 245 000 polypeptide, which is intracellularly cleaved into its mature Mr 160 000 form. Sucrase-isomaltase is shown to be synthesized as a single chain precursor (Mr 245 000 and 265 000) while the precursor of aminopeptidase N is shown to be of apparently the same size as the mature enzyme (Mr 140 000 and 160 000).  相似文献   

6.
The synthesis and secretion of beta-hexosaminidase was studied in wild type and secretion-deficient Tetrahymena thermophila cells by metabolic labelling and immunoprecipitation. beta-Hexosaminidase is synthesized as a Mr 79,000 polypeptide which is within 10 min converted into a Mr 59,000 form. The Mr 59,000 polypeptide is further processed (within 20 min) into at least three major mature forms of Mr 58,000-54,000, which are almost quantitatively secreted into the culture medium within 1-2 h after their synthesis. Both precursor and mature forms contain asparagine-linked oligosaccharide chains which are cleavable by endoglucosaminidase F, but not by endoglucosaminidase H. Neither [32P]orthophosphate nor [35S]sulphate are incorporated into immunoprecipitable precursor and mature beta-hexosaminidases, suggesting the absence of a phosphorylated recognition marker. Biosynthesis and processing of beta-hexosaminidase is apparently unaltered in the secretory mutant MS-1; however the processed polypeptides remain cellular bound in the mutant, indicating that the mutation affects a late event in the secretion pathway of lysosomal enzymes.  相似文献   

7.
Biosynthesis of cathepsin B in cultured normal and I-cell fibroblasts   总被引:2,自引:0,他引:2  
Biosynthesis and processing of cathepsin B in cultured human skin fibroblasts were investigated using immunological procedures. Upon metabolic labeling with [35S]methionine for 10 min, a precursor form with Mr 44,500 was identified. During an 80-min chase, about 50% of it was converted to an Mr 46,000 form. Further processing yielded mature forms with Mr 33,000 and 27,000, in a final quantitative ratio of about 3:1. Processing of cathepsin B was inhibited by leupeptin, which led to an accumulation of the Mr 33,000 polypeptide. The Mr 33,000 form appeared to be the most active form and showed a half-time of about 12 h. About 5% of newly synthesized enzyme was secreted as precursor, being detectable extracellularly already after 40 min. NH4Cl enhanced the secretion of the precursor about 20-fold. The precursor and the 33-kDa form contained phosphorylated N-linked oligosaccharides. Cleavage by peptide N-glycosidase F or biosynthesis in the presence of tunicamycin yielded a precursor with Mr 39,000. Evidence of a mannose 6-phosphate-dependent transport of cathepsin B in fibroblasts was obtained on the basis of the following results: (i) cathepsin B precursor from NH4Cl-stimulated secretions was internalized in a mannose 6-phosphate inhibitable manner, and (ii) I-cell fibroblasts secreted more than 95% of newly synthesized cathepsin B precursor. In conclusion, cathepsin B from human skin fibroblasts shows an analogous biosynthetic behavior as other lysosomal enzymes.  相似文献   

8.
Metalloproteinase inhibitors from bovine cartilage and body fluids   总被引:7,自引:0,他引:7  
Inhibitors of the mammalian metalloproteinases, collagenase, proteoglycanase and gelatinase were isolated from bovine cartilage (extracts and culture medium) and bovine amniotic fluid and serum. These inhibitors either bind or do not bind to concanavalin-A--Sepharose, with Mr (gel filtration) of about 30 000 and 20 000, respectively. Cartilage and chondrocyte culture media contained only concanavalin-A-binding inhibitors whereas cartilage extracts contained only a non-binding inhibitor: serum and amniotic fluid contained both forms of inhibitory activities. In moist biochemical respects, particularly in their abilities to inhibit metalloproteinases, all of the inhibitors were found to be similar. It is concluded that the forms of the inhibitors that differ in Mr may be closely related to the tissue inhibitor of metalloproteinases (TIMP) previously purified from rabbit and human sources. These findings help to clarify other studies on collagenase inhibitors and support the concept that TIMP-like inhibitors may be important in the control of connective tissue degradation.  相似文献   

9.
Rabbit brain capillary endothelial cells treated with 12-O-tetradecanoylphorbol-13-acetate produce the metalloproteinases, procollagenase and prostromelysin, as up to 20% of their total secreted protein. However, little or no catalytic activity of these enzymes can be found after treatment with either trypsin or an organomercurial agent, which are able to activate the proenzymes in the medium from stimulated rabbit fibroblasts. We now have shown that enzyme activities of procollagenase and prostromelysin are revealed after conditioned medium is analyzed by gel filtration chromatography or by electrophoresis on sodium dodecyl sulfate-substrate gels. In both systems, the metalloproteinases were separated from metalloproteinase inhibitors. The major inhibitor of Mr = 30,000 from capillary endothelial cells was immunologically identical with the rabbit tissue inhibitor of metalloproteinases. Two additional inhibitors of metalloproteinases at Mr = 22,000 and 19,000 were also observed. Inhibitors were present in the conditioned medium from rabbit fibroblasts in much lower quantities and were also qualitatively different. When gel filtration chromatography was used to remove the tissue inhibitor of metalloproteinases from medium conditioned by stimulated capillary endothelial cells, both activatable procollagenase and prostromelysin were readily demonstrable. These data suggest that endogenous inhibitors regulate the expression of metalloproteinases secreted by endothelial cells.  相似文献   

10.
The major active forms of cathepsins B and L were identified in Kirsten-virus-transformed mouse fibroblasts by the use of a specific radiolabelled inhibitor, benzyloxycarbonyl-Tyr(-125I)-Ala-CHN2. No other proteins were labelled, demonstrating the specificity of this inhibitor for cysteine proteinases. Cathepsins B and L were distinguished by the use of specific antibodies. One active form of cathepsin B, Mr 33,000-35,000, and two active forms of cathepsin L, Mr 30,000 and 23,000, were identified. The intracellular precursors of these proteins had higher Mr values of 39,000 and 36,000 for cathepsins B and L respectively, as shown by pulse-chase experiments with [35S]methionine-labelled proteins. These did not react with the inhibitor under our culture conditions. The precursor of cathepsin L was secreted whereas the precursor of cathepsin B was not, demonstrating that secretions of the two enzymes are regulated differently. In contrast with results found previously for the purified protein [Mason, Gal & Gottesman (1987) Biochem. J. 248, 449-454], the secreted precursor form of cathepsin L did not react with the inhibitor either, indicating that it is not active and therefore, as such, cannot be directly involved in tumour invasion. The secreted protein did react with the inhibitor when incubated at pH 3.0, showing that the protein can be activated, although this did not occur under our culture conditions.  相似文献   

11.
A third metalloendopeptidase activity, gelatinase, has been completely separated from the collagenase and proteoglycanase activities of rabbit bone culture medium. Although the proteinase could not be purified to homogeneity in large amounts, it was possible to obtain accurate molecular weight values and activity after electrophoresis on non-reduced SDS/polyacrylamide gels. The latent form had an Mr of 65 000 which could be activated with 4-aminophenylmercuric acetate, APMA, to a form of Mr 61 000; under reducing conditions the latent and active forms had Mr of 72 000 and 65 000, respectively. Trypsin was a very poor activator of the latent enzyme. Gelatinase degraded gelatins derived from the interstitial collagens and it also had low activity on native types IV and V collagen and on insoluble elastin. Gelatinase acted synergistically with collagenase in degrading insoluble interstitial collagen. The specific mammalian tissue inhibitor of metalloproteinases inhibited gelatinase by forming a stable inactive complex. Comparison of the properties of gelatinase with those of collagenase and proteoglycanase suggest that the three proteinases form a family which together are capable of degrading all the major macromolecules of connective tissue matrices.  相似文献   

12.
Connective-tissue cells produce a family of metalloproteinases which, once activated, can degrade all the components of the extracellular matrix. These potent enzymes are all inhibited by the tissue inhibitor of metalloproteinases (TIMP), and it was thought that the levels of this inhibitor controlled the extracellular activity of these enzymes. We recently detected a new metalloproteinase inhibitor present in culture media of WI-38 fibroblasts. The inhibitor, named 'large inhibitor of metalloproteinases' (LIMP), can be separated from TIMP by gel filtration on Ultrogel AcA 44, where it is eluted with an apparent Mr of 76,000. A portion of this inhibitor-containing peak binds to concanavalin A-Sepharose, indicating that at least some of the inhibitor contains carbohydrate. LIMP inhibits collagenase (MMP-1), stromelysin (MMP-3) and gelatinase (MMP-2) in a dose-dependent fashion. Collagenase forms tight-binding complexes with LIMP, which can be separated from free collagenase on gel-filtration columns. The complex is eluted with Mr 81,600 (AcA 44) or Mr 60,000 (Superose 12). This complex is larger than that formed between collagenase and TIMP, which has Mr 52,800 (Aca 44) or 41,000 (Superose 12). Polyclonal antibody to TIMP does not recognize LIMP by immunoblotting, and will not block the inhibition of collagenase by LIMP, showing that LIMP is not a multimeric form of TIMP. The role of this new inhibitor in connective-tissue breakdown studies and its relationship to previously described inhibitors of metalloproteinases is discussed.  相似文献   

13.
Rabbit cardiac cathepsin D exists as multiple isomeric forms of Mr = 48,000 within cardiac tissue. Their mechanism of formation and their functional role in cardiac protein degradation are unknown. We have previously demonstrated that cathepsin D is initially synthesized as an Mr = 53,000 precursor that is processed by limited proteolysis within cardiac lysosomes to the Mr = 48,000 active forms of the enzyme. To determine if the multiple forms of active cathepsin D originate from a common precursor, isolated perfused Langendorff rabbit hearts were labeled in pulse (15 or 30 min) and pulse-chase (30 or 150 min) experiments with [35S]methionine. Newly synthesized cathepsin D was isolated by butanol/Triton X-100 extraction and immunoadsorption with anti-cathepsin D IgG-Sepharose, and the isomeric forms were separated by two-dimensional electrophoresis and fluorography. After 15- and 30-min pulse perfusions, 35S-labeled cathepsin D appeared as a single precursor form (Mr = 53,000, pI = 6.6). After 30-min pulse and 30-min chase, the precursor was modified to yield multiple precursor forms, all with molecular weight 53,000, but with differing pI values (6.6-6.0). After 30-min pulse and 150-min chase perfusion, multiple forms of both precursor and proteolytically processed active cathepsin D (Mr = 48,000, pI = 6.2-5.6) were detected. The 35S-labeled, proteolytically processed forms of active cathepsin D co-migrated with the major cathepsin D forms present in cardiac tissue. Subcellular fractionation and perfusions in the presence of chloroquine demonstrated that the multiple precursor forms of cathepsin D originated in a nonlysosomal intracellular compartment. Thus, the multiple forms of active cathepsin D originate from a common high molecular weight precursor, and their synthesis occurs prior to the limited proteolysis of the precursor in cardiac lysosomes.  相似文献   

14.
We have studied the biosynthesis and intracellular processing of three major secretory proteins, albumin, alpha 1-protease inhibitor and alpha 2u-globulin, in cultured rat hepatocytes. The effect of secretion-blocking agents, monensin, a monovalent ionophore, and the microtubule-affecting agents colchicine and taxol was determined. In the control cells, alpha 1-protease inhibitor, a glycoprotein, was first synthesized as an endoglycosidase-H-sensitive form with Mr 51 000, and then processed to two endoglycosidase-H-resistant forms having Mr 51 000 and 56 000, the latter of which was secreted into the medium. Initially synthesized proalbumin was converted with chase to serum-type albumin, while no pro-type precursor was identified for alpha 2u-globulin. In the cells treated with colchicine or taxol, in which secretion was greatly inhibited, the fully processed alpha 1-protease inhibitor and albumin accumulated and were finally secreted into the medium. In the monensin-treated cells, however, most of the newly synthesized alpha 1-protease inhibitor and albumin were not processed to the final mature forms, resulting in accumulation of two 51 000-Mr forms and proalbumin, respectively. Moreover in treated cells, proalbumin and the endoglycosidase-H-resistant alpha 1-protease inhibitor were finally secreted into the medium. Such an effect was not caused by NH4Cl which also inhibited the secretion and is known to exert the similar effect as monensin on the receptor-mediated endocytosis pathway. Based on these results, the use of monensin may prove valuable for more detailed analysis of intracellular processing of various proteins.  相似文献   

15.
Proopiomelanocortin, the common glycoprotein precursor to adrenocorticotropin (ACTH) and beta-lipotropin (beta-LPH), is the most abundant protein synthesized in rat neurointermediate lobes. It represents 30% of the total amount of radioactive proteins obtained after a 1-h pulse incubation with [3H]phenylalanine. Several forms of this protein can be separated by a high-resolution two-dimensional gel electrophoresis technique. The three most abundant species which can be reproducibly characterized by their apparent molecular weights (Mr) and isoelectric points (pI) were called form I (Mr 34 000; pI 8.2), form II (Mr 36 000; pI 8.2), and form III (Mr 35 000; pI 7.3). Additional minor forms, representing together approximately 30% of the total forms I, II, and III combined, are also observed. They have very close molecular weights but differ by their isoelectric points. When glycosylation is prevented by tunicamycin, forms I and II are replaced by a new molecule with the same pI of 8.2 but a slightly lower Mr (32 000). This form is referred to as form T1. Similarly, form III is replaced by form T2 (Mr 33 000; pI 7.3). Forms T1 and T2 are supposed to be nonglycoslyated peptides. They were further characterized by microsequencing and peptide mapping. They both have the same N-terminal amino acid sequence with leucine residues in positions 3 and 11, and they both contain identical [3H]phenylalanine-labeled tryptic fragments, two of them corresponding to the sequences 1-8 of ACTH and 61-69 of beta-LPH. However, a limited digestion with the Staphylococcus aureus (V8 strain) protease generates a collection of peptides different for each form. These results suggest the presence of at least two different gene products corresponding to the major forms of proopiomelanocortin in the rat pars intermedia.  相似文献   

16.
The lysosomal enzyme alpha-L-fucosidase from human skin fibroblasts is synthesized as a 53 kDa glycosylated precursor which is then proteolytically processed to a 50 kDa mature form. This was confirmed by pulse-chase labeling studies with chase times up to 72 h. In fibroblasts treated with 1-deoxymannojirimycin to prevent trimming of high mannose oligosaccharides, endoglycosidase H (endo H) treatment completely deglycosylated and reduced the size of immunoprecipitated alpha-fucosidase by 4-5 kDa, suggesting the presence of two oligosaccharide units. Endoglycosidase H and endo F studies on untreated alpha-fucosidase suggested the presence of one complex-type and one high mannose-type unit, and that the final processing from 53 to 50 kDa did not involve the removal of carbohydrate. Processing was inhibited by the thiol proteinase inhibitor Ep-459, but not by Ep-475 or leupeptin. Since Ep-459 treatment increased both alpha-fucosidase activity (3-fold) and the amount of immunoprecipitable alpha-fucosidase protein in normal human skin fibroblasts, this suggests a role for cysteine-like proteinases either directly or indirectly in lysosomal hydrolase processing and turnover. Subcellular fractionation studies revealed that the proteolytic processing of the 53 kDa precursor to the 50 kDa mature form occurred in the lysosome, or some other dense organelle.  相似文献   

17.
18.
The synthesis, transport and processing of cathepsin C was studied in Morris hepatoma 7777 cells by metabolic labelling, immunoprecipitation and characterization of labelled polypeptides by gel electrophoresis and fluorography. The largest detectable precursor of cathepsin C was a polypeptide of Mr = 92 500. Even 3 min after synthesis this precursor was accompanied by four polypeptides with Mr values ranging from 63 000 to 54 000, indicating cleavage of the precursors within the endoplasmic reticulum. The early forms of cathepsin C were associated with low-buoyant-density organelles containing the markers of endoplasmic reticulum and Golgi complex. About 30% of these early forms were secreted within 3 h after synthesis. The remaining 70% were transferred into dense lysosomes and processed between 2 and 3 h after synthesis to a mixture of the least five major and nine minor polypeptides with Mr values ranging from 73 000 to 12 000. These forms remained stable for at least 3 days. In freshly isolated hepatocytes cathepsin C was processed to forms closely related to those found in the hepatoma cells. Cathepsin C was synthesized in Morris hepatoma 7777 cells as a glycoprotein with mannose-6-phosphate residues that mediated mannose-6-phosphate-specific receptor-dependent uptake in human skin fibroblasts. In contrast to hepatocytes, synthesis of mannose-6-phosphate receptors in Morris hepatoma 7777 cells was below the limit of detection. The hepatoma cells did not express at the cell surface these or other receptors mediating endocytosis of lysosomal enzymes. Further, processing and transport of newly synthesized cathepsin C was largely resistant to NH4Cl. Apparently, cathepsin C is transferred in Morris hepatoma 7777 cells by a mechanism independent of mannose-6-phosphate-specific receptors.  相似文献   

19.
Two different forms of alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein were found in primary cultures of rat hepatocytes. After a 2.5-h labeling period with [35S]methionine the high-mannose-type precursor of alpha 1-proteinase inhibitor (Mr 49000) and alpha 1-acid glycoprotein (Mr 39 000) and the mature-complex-type alpha 1-proteinase inhibitor (Mr 54 000) and alpha 1-acid glycoprotein (Mr 43 000-60 000) could be immunoprecipitated from the cells, but only the complex-type forms of the two glycoproteins were secreted into the hepatocyte media. When hepatocytes were incubated with the mannosidase I inhibitor 1-deoxymannojirimycin at a concentration of 4 mM, the 49 000-Mr form of alpha 1-proteinase inhibitor and the 39 000-Mr form of alpha 1-acid glycoprotein could be detected in the cells as well as in their media. Neither the secretion of alpha 1-proteinase inhibitor nor that of alpha 1-acid glycoprotein was impaired by 1-deoxymannojirimycin. While alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein, secreted by control cells, were resistant to endoglucosaminidase H, alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein, secreted by hepatocytes treated with 4 mM 1-deoxymannojirimycin, could be deglycosylated by endoglucosaminidase H. When the [3H]mannose-labeled oligosaccharides of alpha 1-proteinase inhibitor, secreted by 1-deoxymannojirimycin-treated hepatocytes, were cleaved off by endoglucosaminidase H and analyzed by Bio-Gel P-4 chromatography, they eluted at the position of Man9GlcNAc, indicating that mannosidase I had been efficiently inhibited. 1-Deoxymannojirimycin did not inhibit the synthesis or the cotranslational N-glycosylation of alpha 1-proteinase inhibitor or alpha 1-acid glycoprotein.  相似文献   

20.
Synthesis of the low-density-lipoprotein (LDL) receptor protein by cultured human monocyte-derived macrophages was demonstrated by immunoprecipitation of [35S]methionine-labelled cell extracts with a monoclonal antibody to the bovine adrenal LDL receptor. Although the antibody does not bind to or inhibit binding of 125I-LDL to the LDL receptor on intact fibroblasts, it specifically binds to a protein in extracts of human skin fibroblasts, of Mr approx. 130,000 under non-reducing conditions, that is able to bind LDL. In monocyte-derived macrophages, as in fibroblasts, the receptor is synthesized as a low-Mr precursor that is converted into the mature protein. The half-life of the precursor in human macrophages is approx. 44 min. In cells from two homozygous familial-hypercholesterolaemic subjects, only the precursor form of the receptor is synthesized. Detection of abnormalities of LDL-receptor synthesis in human mononuclear cells may be a useful aid in diagnosis of familial hypercholesterolaemia that is simpler and quicker than methods requiring growth of cultured skin fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号