首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pharmacological therapies in type 1 diabetes for efficient control of glycemia and changes in pain alterations due to diabetic neuropathy are a continuous challenge. Transient receptor potential vanilloid type 1 (TRPV1) from dorsal root ganglia (DRG) neurons is one of the main pharmacological targets in diabetes, and its ligand capsaicin can be a promising compound for blood-glucose control. Our goal is to elucidate the effect of intraperitoneal (i.p.) capsaicin administration in type 1 diabetic mice against TRPV1 receptors from pancreatic DRG primary afferent neurons. A TCR+/?/Ins-HA+/? diabetic mice (dTg) was used, and patch-clamp and immunofluorescence microscopy measurements have been performed on thoracic T9–T12 DRG neurons. Capsaicin (800 μg/kg, i.p. three successive days) administration in the late-phase diabetes reduces blood-glucose levels, partly reverses the TRPV1 current density and recovery time constant, without any effect on TRPV1 expression general pattern, in dTg mice. A TRPV1 hypoalgesia profile was observed in late-phase diabetes, which was partly reversed to normoalgesic profile upon capsaicin i.p. administration. According to the soma dimensions of the thoracic DRG neurons, a detailed analysis of the TRPV1 expression upon capsaicin i.p. treatment was done, and the proportion of large A-fiber neurons expressing TRPV1 increased in dTg capsaicin-treated mice. In conclusion, the benefits of low-dose capsaicin intraperitoneal treatment in late-phase type-1 diabetes should be further exploited.  相似文献   

2.
The adolescent skeleton undergoes accelerated growth determining overall bone density, length, and quality. Diseases such as type 1 diabetes (T1D), most often diagnosed in adolescents, can alter bone processes and promote bone loss. Studies examining type 1 diabetic (T1D) bone pathologies typically utilize adult mice and rely on pharmacologic models such as streptozotocin (STZ)‐induced diabetic rodents. To test the effect of T1D on adolescent bone growth/density we used a novel juvenile genetic model (Ins2+/? mice) that spontaneously develop T1D at approximately 5 weeks of age and compared our findings with STZ‐induced T1D mice. Compared to controls, both Ins2+/? and STZ‐induced T1D mice displayed blood glucose levels greater than 300 mg/dl and reduced body, fat and muscle mass as well as femur trabecular bone density. STZ mice exhibited greater bone loss compared to Ins2+/? mice despite having lower blood glucose levels. Cortical bone was affected in STZ but not Ins2+/? mice. Osteocalcin serum protein and bone RNA levels decreased in both models. Consistent with studies in adult mice, STZ adolescent mice displayed increased marrow adiposity, however this was not observed in the Ins2+/? mice. Reduced femur length, decreased growth plate thickness and decreased collagen II expression in both model simplies impaired cartilage formation. In summary, both pharmacologic and spontaneous adolescent T1D mice demonstrated a bone synthesis and growth defect. STZ appears to cause a more severe phenotype. Thus, the Ins2+/? mouse could serve as a useful model to study adolescent T1D bone loss with fewer complications. J. Cell. Physiol. 228: 689–695, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Acid-sensing ion channels (ASICs) are Na+ channels activated by changes in pH within the peripheral and central nervous systems. Several different isoforms of ASICs combine to form trimeric channels, and their properties are determined by their subunit composition. ASIC2 subunits are widely expressed throughout the brain, where they heteromultimerize with their partnering subunit, ASIC1a. However, ASIC2 contributes little to the pH sensitivity of the channels, and so its function is not well understood. We found that ASIC2 increased cell surface levels of the channel when it is coexpressed with ASIC1a, and genetic deletion of ASIC2 reduced acid-evoked current amplitude in mouse hippocampal neurons. Additionally, ASIC2a interacted with the neuronal synaptic scaffolding protein PSD-95, and PSD-95 reduced cell surface expression and current amplitude in ASICs that contain ASIC2a. Overexpression of PSD-95 also reduced acid-evoked current amplitude in hippocampal neurons. This result was dependent upon ASIC2 since the effect of PSD-95 was abolished in ASIC2−/− neurons. These results lend support to an emerging role of ASIC2 in the targeting of ASICs to surface membranes, and allows for interaction with PSD-95 to regulate these processes.  相似文献   

4.
Acid sensing ion channels (ASICs), Ca2+ and voltage-activated potassium channels (BK) are widely present throughout the central nervous system. Previous studies have shown that when expressed together in heterologous cells, ASICs inhibit BK channels, and this inhibition is relieved by acidic extracellular pH. We hypothesized that ASIC and BK channels might interact in neurons, and that ASICs may regulate BK channel activity. We found that ASICs inhibited BK currents in cultured wild-type cortical neurons, but not in ASIC1a/2/3 triple knockout neurons. The inhibition in the wild-type was partially relieved by a drop in extracellular pH to 6. To test the consequences of ASIC-BK interaction for neuronal excitability, we compared action potential firing in cultured cortical neurons from wild-type and ASIC1a/2/3 null mice. We found that in the knockout, action potentials were narrow and exhibited increased after-hyperpolarization. Moreover, the excitability of these neurons was significantly increased. These findings are consistent with increased BK channel activity in the neurons from ASIC1a/2/3 null mice. Our data suggest that ASICs can act as endogenous pH-dependent inhibitors of BK channels, and thereby can reduce neuronal excitability.  相似文献   

5.
Peripheral purinergic signaling plays an important role in nociception. Increasing evidence suggests that metabotropic P2Y receptors are also involved, but little is known about the underlying mechanism. Herein, we report that selective P2Y receptor agonist uridine 5′-triphosphate (UTP) can exert an enhancing effect on the functional activity of acid-sensing ion channels (ASICs), key sensors for extracellular protons, in rat dorsal root ganglia (DRG) neurons. First, UTP dose-dependently increased the amplitude of ASIC currents. UTP also shifted the concentration–response curve for proton upwards, with a 56.6?±?6.4 % increase of the maximal current response to proton. Second, UTP potentiation of proton-gated currents can be mimicked by adenosine 5′-triphosphate (ATP), but not by P2Y1 receptor agonist ADP. Potentiation of UTP was blocked by P2Y receptor antagonist suramin and by inhibition of intracellular G protein, phospholipase C (PLC), protein kinase C (PKC), or protein interacting with C-kinase 1 (PICK1) signaling. Third, UTP altered acidosis-evoked membrane excitability of DRG neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, UTP dose-dependently exacerbated nociceptive responses to injection of acetic acid in rats. These results suggest that UTP enhanced ASIC-mediated currents and nociceptive responses, which reveal a novel peripheral mechanism underlying UTP-sensitive P2Y2 receptor involvement in hyperalgesia by sensitizing ASICs in primary sensory neurons.  相似文献   

6.
Acid Sensing Ion Channels (ASICs) are a family of proton-gated cation channels that play a role in the sensation of noxious stimuli. Of these, ASIC1a is the only family member that is reported to be permeable to Ca2+, although the absolute magnitude of the Ca2+ current is unclear. Here, we used patch-clamp photometry to determine the contribution of Ca2+ to total current through native and recombinant ASIC1a receptors. We found that acidification of the extracellular medium evoked amiloride and psalmotoxin 1-sensitive currents in isolated chick dorsal root ganglion neurons and human embryonic kidney cells, but did not alter fura-2 fluorescence when the bath concentration of Ca2+ was close to that found in normal physiological conditions. Further, activation of recombinant ASIC1a receptors also failed to produce measurable changes in fluorescence despite of the fact that the total cation current through the over-expressed receptor was ten-fold larger than that of the native channels. Finally, we imaged a field of intact DRG neurons loaded with the Ca2+-sensing dye Fluo-4, and found that acidification increased [Ca2+]i in a small population of cells. Thus, although our whole-field imaging data agree with previous studies that activation of ASIC1a receptors can potentially cause elevations in intracellular free Ca2+, our single cell data strongly challenges the view that Ca2+ entry through the ASIC1a receptor itself contributes to this response.  相似文献   

7.
A number of genes are known to be involved in glucose homeostasis. Mutations and polymorphisms in candidate genes may effect insulin production, action or resistance. This study was designed to report the association of genetic polymorphism with the type 2 diabetes (T2D) in Pakistani population. A total of 458 subjects (case n = 288, control n = 170) participated in the study. Nine single nucleotide polymorphisms were investigated in genes IDE (rs6583813 C>T, rs7910977 C>T), POU2F1 (rs3767434 A>T, rs10918682 A>T, rs2146727 A>G), WFS1 (rs734312 A>G), PON1 (rs854560 T>A), IL1α (rs1800587 C>T) and IL1β (rs1143634 C>T). Genotyping was performed by DNA sequencing after nested polymerase chain reaction of targeted regions. Results indicated that rs7910977 in IDE showed significant association with the development of T2D [P = 0.012, OR 1.677 (95 % CI 1.112–2.438)]. The rs10918682 in POU2F1 was associated with T2D [P < 0.001, OR 3.606 (95 % CI 2.165–6.005)]. The rs854560 in PON1was associated with incidences of T2D and increased the risk of cardiovascular complications [P = 0.031, OR 0.663 (95 % CI 0.455–0.965)] in diabetics. The rs734312 from WFS1 gene was associated with diabetes at genotype level (P < 0.01). Haplotype analysis of rs1800587–rs1143634 depicted CC haplotype increased the susceptibility to diabetes (P < 0.05). Haplotype GAA from rs2146727–10918682–rs3767434 was protective against diabetes (P < 0.01) and GGA exhibited the association with T2D (P < 0.01). Haplotype CT from rs6583813–rs7910977 was protective against diabetes (P = 0.02). Our study provided evidence to IDE, PON1, WFS1, POU2F1, IL1α and IL1β associated with T2D in Pakistanis.  相似文献   

8.
The olfactory bulb contains the first synaptic relay in the olfactory pathway, the sensory system in which odorants are detected enabling these chemical stimuli to be transformed into electrical signals and, ultimately, the perception of odor. Acid-sensing ion channels (ASICs), a family of proton-gated cation channels, are widely expressed in neurons of the central nervous system. However, no direct electrophysiological and pharmacological characterizations of ASICs in olfactory bulb neurons have been described. Using a combination of whole-cell patch-clamp recordings and biochemical and molecular biological analyses, we demonstrated that functional ASICs exist in mouse olfactory bulb mitral/tufted (M/T) neurons and mainly consist of homomeric ASIC1a and heteromeric ASIC1a/2a channels. ASIC activation depolarized cultured M/T neurons and increased their intracellular calcium concentration. Thus, ASIC activation may play an important role in normal olfactory function.  相似文献   

9.
Acid sensing ion channels (ASICs) are proton-gated cation channels that are expressed in the nervous system and play an important role in fear learning and memory. The function of ASICs in the pituitary, an endocrine gland that contributes to emotions, is unknown. We sought to investigate which ASIC subunits were present in the pituitary and found mRNA expression for all ASIC isoforms, including ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4. We also observed acid-evoked ASIC-like currents in isolated anterior pituitary cells that were absent in mice lacking ASIC1a. The biophysical properties and the responses to PcTx1, amiloride, Ca2+ and Zn2+ suggested that ASIC currents were mediated predominantly by heteromultimeric channels that contained ASIC1a and ASIC2a or ASIC2b. ASIC currents were also sensitive to FMRFamide (Phe-Met-Arg-Phe amide), suggesting that FMRFamide-like compounds might endogenously regulate pituitary ASICs. To determine whether ASICs might regulate pituitary cell function, we applied low pH and found that it increased the intracellular Ca2+ concentration. These data suggest that ASIC channels are present and functionally active in anterior pituitary cells and may therefore influence their function.  相似文献   

10.
Acidosis is a common feature of brain in acute neurological injury, particularly in ischemia where low pH has been assumed to play an important role in the pathological process. However, the cellular and molecular mechanisms underlying acidosis-induced injury remain unclear. Recent studies have demonstrated that activation of Ca2+-permeable acid-sensing ion channels (ASIC1a) is largely responsible for acidosis-mediated, glutamate receptor-independent, neuronal injury. In cultured mouse cortical neurons, lowering extracellular pH to the level commonly seen in ischemic brain activates amiloride-sensitive ASIC currents. In the majority of these neurons, ASICs are permeable to Ca2+, and an activation of these channels induces increases in the concentration of intracellular Ca2+ ([Ca2+]i). Activation of ASICs with resultant [Ca2+]i loading induces time-dependent neuronal injury occurring in the presence of the blockers for voltage-gated Ca2+ channels and the glutamate receptors. This acid-induced injury is, however, inhibited by the blockers of ASICs, and by reducing [Ca2+]o. In focal ischemia, intracerebroventricular administration of ASIC1a blockers, or knockout of the ASIC1a gene protects brain from injury and does so more potently than glutamate antagonism. Furthermore, pharmacological blockade of ASICs has up to a 5 h therapeutic time window, far beyond that of glutamate antagonists. Thus, targeting the Ca2+-permeable acid-sensing ion channels may prove to be a novel neuroprotective strategy for stroke patients.  相似文献   

11.
Neurons innervating the airways contribute to airway hyperreactivity (AHR), a hallmark feature of asthma. Several observations suggested that acid-sensing ion channels (ASICs), neuronal cation channels activated by protons, might contribute to AHR. For example, ASICs are found in vagal sensory neurons that innervate airways, and asthmatic airways can become acidic. Moreover, airway acidification activates ASIC currents and depolarizes neurons innervating airways. We found ASIC1a protein in vagal ganglia neurons, but not airway epithelium or smooth muscle. We induced AHR by sensitizing mice to ovalbumin and found that ASIC1a-/- mice failed to exhibit AHR despite a robust inflammatory response. Loss of ASIC1a also decreased bronchoalveolar lavage fluid levels of substance P, a sensory neuropeptide secreted from vagal sensory neurons that contributes to AHR. These findings suggest that ASIC1a is an important mediator of AHR and raise the possibility that inhibiting ASIC channels might be beneficial in asthma.  相似文献   

12.
Acid-sensing ion channels (ASIC) play an important role in the central neuronal system and excessive activation of ASICs induces neuronal damage. Recent studies show that ASIC1a, a subunit of ASIC, is involved in stress processes but the mechanisms by which ASIC1a is regulated by corticosterone (CORT), a stress-induced hormone, are as yet unelucidated. In the present study, to explore the effects of CORT on ASIC1a in cultured hippocampal neurons, the whole-cell patch clamp technique was used. We present data showing that extracellular application of 1 and 10 μM CORT increase the inward current when solution of pH 6.0 is applied to the exterior of the cell. Moreover, extracellular application of membrane-impermeable CORT-BSA (1 μM) maintains current elevation induced by the action of ASIC1a. However, intracellular application of CORT (1 μM) did not increase ASIC1a current. Subsequent extracellular application of CORT enhanced the amplitude of ASIC1a current. Also, RU38486 (10 μM), an antagonist of nuclear glucocorticoids receptor, did not block an increase of ASIC1a current induced by CORT. In addition, CORT application further resulted in a significant enhancement of ASIC1a current in the presence of phorbol 12-myristate 13-acetate (0.5 μM) or bryostatin1 (1 μM), which are both protein kinase C (PKC) agonists. On the contrary, after pretreatment with GF109203X (3 μM), an antagonist of PKC, CORT did not elevate ASIC1a current. These data indicate that the rapid increase of ASIC1a current induced by CORT may be caused by the activation of corticosteroid receptors found on the cell membranes of hippocampal neurons and it may involve a PKC-dependent mechanism.  相似文献   

13.
The voltage-gated K+ (Kv) channel blocker 4-aminopyridine (4-AP) is used to target symptoms of the neuroinflammatory disease multiple sclerosis (MS). By blocking Kv channels, 4-AP facilitates action potential conduction and neurotransmitter release in presynaptic neurons, lessening the effects of demyelination. Because they conduct inward Na+ and Ca2+ currents that contribute to axonal degeneration in response to inflammatory conditions, acid-sensing ion channels (ASICs) contribute to the pathology of MS. Consequently, ASICs are emerging as disease-modifying targets in MS. Surprisingly, as first demonstrated here, 4-AP inhibits neuronal degenerin/epithelial Na+ (Deg/ENaC) channels, including ASIC and BLINaC. This effect is specific for 4-AP compared with its heterocyclic base, pyridine, and the related derivative, 4-methylpyridine; and akin to the actions of 4-AP on the structurally unrelated Kv channels, dose- and voltage-dependent. 4-AP has differential actions on distinct ASICs, strongly inhibiting ASIC1a channels expressed in central neurons but being without effect on ASIC3, which is enriched in peripheral sensory neurons. The voltage dependence of the 4-AP block and the single binding site for this inhibitor are consistent with 4-AP binding in the pore of Deg/ENaC channels as it does Kv channels, suggesting a similar mechanism of inhibition in these two classes of channels. These findings argue that effects on both Kv and Deg/ENaC channels should be considered when evaluating the actions of 4-AP. Importantly, the current results are consistent with 4-AP influencing the symptoms of MS as well as the course of the disease because of inhibitory actions on Kv and ASIC channels, respectively.  相似文献   

14.
Acid-sensing ion channels (ASICs) are sodium channels gated by extracellular protons. The recent crystallization of ASIC1a identified potential binding sites for Cl in the extracellular domain that are highly conserved between ASIC isoforms. However, the significance of Cl binding is unknown. We investigated the effect of Cl substitution on heterologously expressed ASIC1a current and H+-gated currents from hippocampal neurons recorded by whole-cell patch clamp. Replacement of extracellular Cl with the impermeable and inert anion methanesulfonate (MeSO3) caused ASIC1a currents to desensitize at a faster rate and attenuated tachyphylaxis. However, peak current amplitude, pH sensitivity, and selectivity were unchanged. Other anions, including Br, I, and thiocyanate, also altered the kinetics of desensitization and tachyphylaxis. Mutation of the residues that form the Cl-binding site in ASIC1a abolished the modulatory effects of anions. The results of anion substitution on native ASIC channels in hippocampal neurons mirrored those in heterologously expressed ASIC1a and altered acid-induced neuronal death. Anion modulation of ASICs provides new insight into channel gating and may prove important in pathological brain conditions associated with changes in pH and Cl.  相似文献   

15.
Acid-sensing ion channel 1a (ASIC1a) and 2a (ASIC2a) subunits are widely expressed throughout mammalian central nervous system. Activation of Ca2+-permeable ASIC1a homomultimers is largely responsible for acidosis-mediated, glutamate receptor-independent, ischemic neuronal injury. The function of ASIC2a in brain ischemia is less known except that transient global ischemia induces ASIC2a protein expression up-regulation in neurons that survived ischemia. Acidosis is assumed to play a critical role in brain ischemia injury. In the present experiment, rat C6 neuroglioma cells were used to explore the function of ASIC2a. MTT and relative LDH release assay revealed that knockdown of ASIC2a could aggravate the acidosis-induced injury of C6 cells. Through changing extracellular Ca2+ concentration and measuring intracellular calcium fluorescence intensity, it was found that aggravated damage was due to toxic Ca2+ overload via ASICs mechanisms. The current results indicated that, different from ASIC1a, ASIC2a probably played a protective role against the injury induced by extracellular acidosis in C6 cells.  相似文献   

16.
Three observations have suggested that acid-sensing ion channels (ASICs) might be mammalian cutaneous mechanoreceptors; they are structurally related to Caenorhabditis elegans mechanoreceptors, they are localized in specialized cutaneous mechanosensory structures, and mechanical displacement generates an ASIC-dependent depolarization in some neurons. However, previous studies of mice bearing a single disrupted ASIC gene showed only subtle or no alterations in cutaneous mechanosensitivity. Because functional redundancy of ASIC subunits might explain limited phenotypic alterations, we hypothesized that disrupting multiple ASIC genes would markedly impair cutaneous mechanosensation. We found the opposite. In behavioral studies, mice with simultaneous disruptions of ASIC1a, -2 and -3 genes (triple-knockouts, TKOs) showed increased paw withdrawal frequencies when mechanically stimulated with von Frey filaments. Moreover, in single-fiber nerve recordings of cutaneous afferents, mechanical stimulation generated enhanced activity in A-mechanonociceptors of ASIC TKOs compared to wild-type mice. Responses of all other fiber types did not differ between the two genotypes. These data indicate that ASIC subunits influence cutaneous mechanosensitivity. However, it is unlikely that ASICs directly transduce mechanical stimuli. We speculate that physical and/or functional association of ASICs with other components of the mechanosensory transduction apparatus contributes to normal cutaneous mechanosensation.  相似文献   

17.
18.
Acid‐sensing ion channels (ASICs) have been implicated in fear‐, addiction‐ and depression‐related behaviors in mice. While these effects have been attributed to ASIC1A in neurons, it has been reported that ASICs may also function in nonneuronal cells. To determine if ASIC1A in neurons is indeed required, we generated neuron‐specific knockout (KO) mice with floxed Asic1a alleles disrupted by Cre recombinase driven by the neuron‐specific synapsin I promoter (SynAsic1a KO mice). We confirmed that Cre expression occurred in neurons, but not all neurons, and not in nonneuronal cells including astrocytes. Consequent loss of ASIC1A in some but not all neurons was verified by western blotting, immunohistochemistry and electrophysiology. We found ASIC1A was disrupted in fear circuit neurons, and SynAsic1a KO mice exhibited prominent deficits in multiple fear‐related behaviors including Pavlovian fear conditioning to cue and context, predator odor‐evoked freezing and freezing responses to carbon dioxide inhalation. In contrast, in the nucleus accumbens ASIC1A expression was relatively normal in SynAsic1a KO mice, and consistent with this observation, cocaine conditioned place preference (CPP) was normal. Interestingly, depression‐related behavior in the forced swim test, which has been previously linked to ASIC1A in the amygdala, was also normal. Together, these data suggest neurons are an important site of ASIC1A action in fear‐related behaviors, whereas other behaviors likely depend on ASIC1A in other neurons or cell types not targeted in SynAsic1a KO mice. These findings highlight the need for further work to discern the roles of ASICs in specific cell types and brain sites.  相似文献   

19.
Acid-sensing ion channels (ASICs), a group of Na+-selective and Ca2+-permeant ligand-gated cation channels, can be transiently activated by extracellular acid. Among seven subunits of ASICs, acid-sensing ion channel 1a (ASIC1a), which is responsible for Ca2+ transportation, is elevated in response to inflammation, tumor, and ischemic injury in central nervous system and non-neuronal tissues. In this study, we demonstrated for the first time the presence of ASIC1a in rat liver and hepatic stellate cells (HSCs). Furthermore, the expression of ASIC1a was increased in primary HSCs and liver tissues of CCl4-treated rats, suggesting that ASIC1a may play certain role in liver fibrosis. Interestingly, we identified that the level of ASIC1a was significantly elevated in response to platelet-derived growth factor (PDGF) induction in a time- and dose-dependent manner. It was also established that Ca2+-transporting ASIC1a was involved in acid-induced injury of different cell types. Moreover, inhibition or silencing of ASIC1a was able to inhibit PDGF-induced pro-fibrogenic effects of activated rat HSCs, including cell activation, de novo synthesis of extracellular matrix components through mitogen-activated protein kinase signaling pathway. Collectively, our studies identified that ASIC1a was expressed in rat liver and HSCs and provided a strong evidence for the involvement of the ASIC1a in the progression of hepatic fibrosis.  相似文献   

20.
Extracellular acidification contributes to pain by activating or modulating nociceptor activity. To evaluate acidic signaling from the colon, we characterized acid-elicited currents in thoracolumbar (TL) and lumbosacral (LS) dorsal root ganglion (DRG) neurons identified by content of a fluorescent dye (DiI) previously injected into the colon wall. In 13% of unidentified LS DRG neurons (not labeled with DiI) and 69% of LS colon neurons labeled with DiI, protons activated a sustained current that was significantly and reversibly attenuated by the transient receptor potential vanilloid receptor 1 (TRPV1) antagonist capsazepine. In contrast, 63% of unidentified LS DRG neurons and 4% of LS colon neurons exhibited transient amiloride-sensitive acid-sensing ion channel (ASIC) currents. The peak current density of acid-elicited currents was significantly reduced in colon sensory neurons from TRPV1-null mice, supporting predominant expression of TRPV1 in LS colon sensory neurons, which was also confirmed immunohistochemically. Similar to LS colon DRG neurons, acid-elicited currents in TL colon DRG neurons were mediated predominantly by TRPV1. However, the pH producing half-activation of responses significantly differed between TL and LS colon DRG neurons. The properties of acid-elicited currents in colon DRG neurons suggest differential contributions of ASICs and TRPV1 to colon sensation and likely nociception. visceral pain; dorsal root ganglion neurons; acid-sensing ion channel; capsaicin receptor; acid-evoked currents; transient receptor potential vanilloid receptor 1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号