首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oculocutaneous albinism type 1A (OCA1A) is the most severe form of albinism characterized by a complete lack of melanin production throughout life and is caused by mutations in the TYR gene. TYR gene codes tyrosinase protein to its relation with melanin formation by knowing the function of these SNPs. Based on the computational approaches, we have analyzed the genetic variations that could change the functional behaviour by altering the structural arrangement in TYR protein which is responsible for OCA1A. Consequences of mutation on TYR structure were observed by analyzing the flexibility behaviour of native and mutant tyrosinase protein. Mutations T373K, N371Y, M370T and P313R were suggested as high deleterious effect on TYR protein and it is responsible for OCA1A which were also endorsed with previous in vivo experimental studies. Based on the quantitative assessment and flexibility analysis of OCA1A variants, T373K showed the most deleterious effect. Our analysis determines that certain mutations can affect the dynamic properties of protein and can lead to disease conditions. This study provides a significant insight into the underlying molecular mechanism involved in albinism associated with OCA1A.  相似文献   

2.
Tyrosinase related protein 1 (TYRP1) is the most abundant melanosomal protein of the melanocyte, where plays an important role in the synthesis of eumelanin, possibly catalyzing the oxidation of 5,6-dihydroxyindole-2-carboxylic acid to 5,6-quinone-2-carboxylic acid. Mutations to the TYRP1 gene can result in oculocutaneous albinism type 3 (OCA3), a rare disease characterized by reduced synthesis of melanin in skin, hair, and eyes. To investigate the effect of genetic mutations on the TYRP1 structure, function, and stability, we engineered the intramelanosomal domain of TYRP1 and its mutant variants mimicking either OCA3-related changes, C30R, H215Y, D308N, and R326H or R87G mutant variant, analogous to OCA1-related pathogenic effect in tyrosinase. Proteins were produced in Trichoplusia Ni larvae, then purified, and analyzed by biochemical methods. Data shows that D308N and R326H mutants keep the native conformations and demonstrate no change in their stability and enzymatic activity. In contrast, mutations C30R and R87G localized in the Cys-rich domain show the variants misfolding during the purification process. The H215Y variant disrupts the binding of Zn2+ in the active site and thus reduces the strength of the enzyme/substrate interactions. Our results, consistent with the clinical and in silico studies, show that mutations at the protein surface are expected to have a negligible phenotype change compared to that of TYRP1. For the mutations with severe phenotype changes, which were localized in the Cys-rich domain or the active site, we confirmed a complete or partial protein misfolding as the possible mechanism of protein malfunction caused by OCA3 inherited mutations.  相似文献   

3.
Solute carrier family 24 member 5 (SLC24A5) is a gene that is associated with oculocutaneous albinism type 6 (OCA6) disorder and is involved in skin and hair pigmentation. It is involved in the maturation of melanosomes and melanin synthesis. SLC24A5 gene is located in the chromosomal position of 15q21.1. The present study involves the use of computational techniques in order to obtain a detailed picture of the most probable mutations that are associated with SLC24A5. From the observed result it was found that the mutation S145F is most deleterious and disease associated is predicted using several bioinformatics tools. The 3-D structures of native and mutant (S145F) were modeled in order to understand protein functionality using ab initio Robetta server. The modeled structure validation was done with ERRAT, Verify-3D, Procheck and RAMPAGE Ramachandran plot analysis. The most validated structure undergoes molecular dynamics simulations (MDS) study to understand the structural and functional behaviour of the native and mutant proteins. The MDS result showed the more flexibility in the native SLC24A5 structure. Due to mutation in the SLC24A5 protein structure it became more rigid and might disturb the conformational changes and glycosylation function of protein structure and might play role in inducing the OCA6. This study provides a significant insight into the underlying molecular mechanism involved in albinism associated with OCA6. It further helps scientists to develop a drug therapy against OCA 6 disease.

Communicated by Ramaswamy H. Sarma  相似文献   


4.

Background

Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes.

Methodology/Principal Findings

The intra-melanosomal domain of human tyrosinase (residues 19–469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure.

Conclusions/Significance

The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure – function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.  相似文献   

5.
Oculocutaneous albinism type 4 (OCA4) is an autosomal recessive hypopigmentary disorder caused by mutations in the Membrane-Associated Transporter Protein gene (SLC45A2). The SLC45A2 protein is a 530-amino-acid polypeptide that contains 12 putative transmembrane domains, and appears to be a transporter that mediates melanin synthesis. Eighteen pathological mutations have been reported so far. In this study, six novel mutations, p.Y49C (c.146A > G), p.G89R (c.265G > A), p.C229Y (c.686G > A), p.T437A (c.1309A > G), p.T440A (c.1318A > G) and p.G473D (c.1418G > A) were found in eight Japanese patients with various clinical phenotypes. The phenotypes of OCA4 were as various as the other types of OCA and probably depended on the mutation sites in the SLC45A2 gene.  相似文献   

6.
Oculocutaneous albinism (OCA) is caused by reduced or deficient melanin pigmentation in the skin, hair, and eyes. OCA has different phenotypes resulting from mutations in distinct pigmentation genes involved in melanogenesis. OCA type 2 (OCA2), the most common form of OCA, is an autosomal recessive disorder caused by mutations in the P gene, the function(s) of which is controversial. In order to elucidate the mechanism(s) involved in OCA2, our group used several antibodies specific for various melanosomal proteins (tyrosinase, Tyrp1, Dct, Pmel17 and HMB45), including a specific set of polyclonal antibodies against the p protein. We used confocal immunohistochemistry to compare the processing and distribution of those melanosomal proteins in wild type (melan-a) and in p mutant (melan-p1) melanocytes. Our results indicate that the melanin content of melan-p1 melanocytes was less than 50% that of wild type melan-a melanocytes. In contrast, the tyrosinase activities were similar in extracts of wild type and p mutant melanocytes. Confocal microscopy studies and pulse-chase analyses showed altered processing and sorting of tyrosinase, which is released from melan-p1 cells to the medium. Processing and sorting of Tyrp1 was also altered to some extent. However, Dct and Pmel17 expression and subcellular localization were similar in melan-a and in melan-p1 melanocytes. In melan-a cells, the p protein showed mainly a perinuclear pattern with some staining in the cytoplasm where some co-localization with HMB45 antibody was observed. These findings suggest that the p protein plays a major role in modulating the intracellular transport of tyrosinase and a minor role for Tyrp1, but is not critically involved in the transport of Dct and Pmel17. This study provides a basis to understand the relationship of the p protein with tyrosinase function and melanin synthesis, and also provides a rational approach to unveil the consequences of P gene mutations in the pathogenesis of OCA2.  相似文献   

7.
Oculocutaneous albinism (OCA) is a genetic disease characterized by the reduction or deficiency of melanin in eyes, skin, and hair. OCA exhibits genetic heterogeneity. Presently, there are four types of OCA named as OCA1, OCA2, OCA3, and OCA4. OCA3 is more common in African born blacks but rarely found in other ethnic populations. Our recent genotyping of patients with OCA of Chinese descent has identified two patients who were not OCA1, OCA2, or OCA4. Examination and analysis of the TYRP1 gene identified them to be having OCA3. PCR and DNA sequencing analysis found that the mutant TYPR1 alleles were present in each of the two patients, c.780-791del/c.1067G>A (p.R356Q) and c.625G>TT (p.G209LfsX1)/c.643C>T (p.H215Y). The c.780-791del and c.1067G>A mutations have been already reported. However, the c.625G>TT and c.643C>T mutations have not been previously reported and were found to be maternal and paternal mutations, respectively. Moreover, population screening and bioinformatic analysis were carried out to determine the effects of these two mutations which revealed that both the mutation were pathogenic. Based on the similar mild phenotype of these two patients, we suggest that OCA3 might be prevalent within the Chinese population.  相似文献   

8.
Tyrosinase serves as a key enzyme in the synthesis of melanin. In humans mutations in the TYR gene are associated with type 1 oculocutaneous albinism (OCA1) that leads to reduced or absent pigmentation of skin, hair and eye. Various mutations causing OCA in man, mouse, rabbit and cattle have been identified throughout the Tyrosinase gene including nonsense, missense, frameshift and splice site alterations. Here we report a missense substitution at codon R299H in exon 2 of the Tyr gene in the albino Wistar rat. As this very exchange has already been described in OCA patients, our findings reinforce the significance of this region for normal catalytic activity of tyrosinase protein.  相似文献   

9.
Oculocutaneous albinism type 4 (OCA4) is an autosomal recessive hypopigmentary disorder caused by mutations in the Membrane‐Associated Transporter Protein gene (SLC45A2). The SLC45A2 protein is a 530‐amino‐acid polypeptide that contains 12 putative transmembrane domains, and appears to be a transporter that mediates melanin synthesis. Eighteen pathological mutations have been reported so far. In this study, six novel mutations, p.Y49C (c.146A > G), p.G89R (c.265G > A), p.C229Y (c.686G > A), p.T437A (c.1309A > G), p.T440A (c.1318A > G) and p.G473D (c.1418G > A) were found in eight Japanese patients with various clinical phenotypes. The phenotypes of OCA4 were as various as the other types of OCA and probably depended on the mutation sites in the SLC45A2 gene.  相似文献   

10.
Oculocutaneous albinism (OCA) affects approximately 1/20,000 people worldwide. All forms of OCA exhibit generalized hypopigmentation. Reduced pigmentation during eye development results in misrouting of the optic nerves, nystagmus, alternating strabismus, and reduced visual acuity. Loss of pigmentation in the skin leads to an increased risk for skin cancer. Two common forms and one infrequent form of OCA have been described. OCA1 (MIM 203100) is associated with mutations of the TYR gene encoding tyrosinase (the rate-limiting enzyme in the production of melanin pigment) and accounts for approximately 40% of OCA worldwide. OCA2 (MIM 203200), the most common form of OCA, is associated with mutations of the P gene and accounts for approximately 50% of OCA worldwide. OCA3 (MIM 203290), a rare form of OCA and also known as "rufous/red albinism," is associated with mutations in TYRP1 (encoding tyrosinase-related protein 1). Analysis of the TYR and P genes in patients with OCA suggests that other genes may be associated with OCA. We have identified the mouse underwhite gene (uw) and its human orthologue, which underlies a new form of human OCA, termed "OCA4." The encoded protein, MATP (for "membrane-associated transporter protein") is predicted to span the membrane 12 times and likely functions as a transporter.  相似文献   

11.
12.
Spinocerebellar degeneration, termed as ataxia is a neurological disorder of central nervous system, characterized by limb in‐coordination and a progressive gait. The patient also demonstrates specific symptoms of muscle weakness, slurring of speech, and decreased vibration senses. Expansion of polyglutamine trinucleotide (CAG) within ATXN2 gene with 35 or more repeats, results in spinocerebellar ataxia type‐2. Protein ataxin‐2 coded by ATXN2 gene has been reported to have a crucial role in translation of the genetic information through sequestering the histone acetyl transferases (HAT) resulting in a state of hypo‐acetylation. In the present study, we have evaluated the outcome for 122 non synonymous single nucleotide polymorphisms (nsSNPs) reported within ATXN2 gene through computational tools such as SIFT, PolyPhen 2.0, PANTHER, I‐mutant 2.0, Phd‐SNP, Pmut, MutPred. The apo and mutant (L305V and Q339L) form of structures for the ataxin‐2 protein were modeled for gaining insights toward 3D spatial arrangement. Further, molecular dynamics simulations and structural analysis were performed to observe the brunt of disease associated nsSNPs toward the strength and secondary properties of ataxin‐2 protein structure. Our results showed that, L305V is a highly deleterious and disease causing point substitution. Analysis based on RMSD, RMSF, Rg, SASA, number of hydrogen bonds (NH bonds), covariance matrix trace, projection analysis for eigen vector demonstrated a significant instability and conformation along with rise in mutant flexibility values in comparison to the apo form of ataxin‐2 protein. The study provides a blue print of computational methodologies to examine the ataxin‐blend SNPs. J. Cell. Biochem. 119: 499–510, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

13.
Type II oculocutaneous albinism (OCA2) is an autosomal recessive disorder in which the biosynthesis of melanin pigment is reduced in the skin, hair, and eyes. OCA2, which results from mutations of the P gene, is the most frequent type of albinism in African and African-American patients. OCA2 is especially frequent in Tanzania, where it occurs with an incidence of approximately 1/1,400. We have identified abnormalities of the P gene in each of 13 unrelated patients with OCA2 from Tanzania. One of these, a deletion of exon 7, is strongly predominant, accounting for approximately 77% of mutant alleles in this group of patients.  相似文献   

14.
Oculocutaneous albinism (OCA) is a heterogeneous group of autosomal recessive disorders resulting from mutations of the tyrosinase (TYR) gene and presents with either complete or partial absence of pigment in the skin, hair and eyes due to a defect in an enzyme involved in the production of melanin. In this study, mutations in the TYR gene of 30 unrelated Iranian OCA1 patients and 100 healthy individuals were examined using PCR-sequencing. Additionally, in order to predict the possible effects of new mutations on the structure and function of tyrosinase, these mutations were analyzed by SIFT, PolyPhen and I-Mutant 2 software. Here, two new pathogenic p.C89S and p.H180R mutations were detected in two OCA1 patients. Moreover, the R402Q and S192Y variants, which are common non-pathogenic polymorphisms, were detected in 17.5% and 35% of the patients, respectively. The outcome of this study has extended the genotypic spectrum of OCA1 patients, which paves the way for more efficient carrier detection and genetic counseling.  相似文献   

15.
Oculocutaneous albinism (OCA) is a complex genetic disease with great clinical heterogeneity. Four different types of OCA have been reported to date (OCA1, OCA2, OCA3, and OCA4). MATP was recently reported in a single Turkish OCA patient as the fourth pathological gene, but no other patients with OCA4 have been reported. Here, we report the mutational profile of OCA4, determined by genetic analysis of the MATP gene in a large Japanese population with OCA. Of 75 unrelated patients that were screened, 18 individuals (24%) were identified as having OCA4; they harbored seven novel mutations, including four missense mutations (P58S, D157N, G188V, and V507L) and three frameshift mutations (S90CGGCCA-->GC, V144insAAGT, and V469delG), showing that MATP is the most frequent locus for tyrosinase-positive OCA in Japanese patients. We discuss the functional melanogenic activity of each mutant allele, judging from the relationship between the phenotypes and genotypes of the patients. This is the first report on a large group of patients with OCA4.  相似文献   

16.
Genetic polymorphisms are mostly associated with inherited diseases, detecting and analyzing the biological significance of functional single-nucleotide polymorphisms (SNPs) using wet laboratory experiments is an arduous task hence the computational analysis of putative SNPs is essential before conducting a study on a large population. SNP in the leptin receptor (LEPR) could result in the retention of intracellular signalling due to the structural and functional instability of the receptor causing abnormal reproductive function in human. In this first comprehensive computational analysis of LEPR gene mutation, we have identified and analyzed the functional consequence and structural significance of the SNPs in LEPR using recently developed several computational algorithms. Thirteen deleterious mutations such as W13C, S93G, I232R, Q307H, Y354C, E497A, Q571H, R612H, K656N, T690A, T699M V741M, and L760R were identified in the LEPR gene coding region. Backpropagation algorithm has been developed to forestall the deleterious nature of SNP and to validate the outcome of the tested computational tools. From ConSurf prediction three SNPs (Q571H, R612H, and T699M) were highly conserved on LEPR protein and the most deleterious variant R612H had one hydrogen bond abolished and severely reduced protein stability. Molecular docking suggested that the mutant (R612H) LEPR had lowest binding energy than native LEPR with the ligand molecule. Thus the energetically destructive changeover of ARG to HIS in R612H could possibly affect the LEPR protein structural stability and functional constancy due to interruption in the amino acid interactions and could result in reproductive disorders in human and increases the complication in obstetric and pregnancy outcome.  相似文献   

17.
The heterogeneous group of disorders known as oculocutaneous albinism (OCA) shares cutaneous and ocular hypopigmentation associated with common developmental abnormalities of the eye. Mutations of at least 11 loci produce this phenotype. The majority of affected individuals develop some cutaneous melanin; this is predominantly seen as yellow/blond hair, whereas fewer have brown hair. The OCA phenotype is dependent on the constitutional pigmentation background of the family, with more OCA pigmentation found in families with darker constitutional pigmentation, which indicates that other genes may modify the OCA phenotype. Sequence variation in the melanocortin-1 receptor (MC1R) gene is associated with red hair in the normal population, but red hair is unusual in OCA. We identified eight probands with OCA who had red hair at birth. Mutations in the P gene were responsible for classic phenotype of oculocutaneous albinism type 2 (OCA2) in all eight, and mutations in the MC1R gene were responsible for the red (rather than yellow/blond) hair in the six of eight who continued to have red hair after birth. This is the first demonstration of a gene modifying the OCA phenotype in humans.  相似文献   

18.
Oculocutaneous albinism (OCA) is a group of autosomal recessive disorders characterized by deficient synthesis of melanin pigment. Type I (tyrosinase-deficient) OCA results from mutations of the tyrosinase gene (TYR gene) encoding tyrosinase, the enzyme that catalyzes the first two steps of melanin biosynthesis. Mutations of the TYR gene have been identified in a large number of patients, most of Caucasian ethnic origin, with various forms of type I OCA. Here, we present an analysis of the TYR gene in eight Indo-Pakistani patients with type I OCA. We describe four novel TYR gene mutations and a fifth mutation previously observed in a Caucasian patient.  相似文献   

19.
Tyrosinase-positive oculocutaneous albinism (OCA2), an autosomal recessive disorder of the melanin biosynthetic pathway, is the most common recessive disorder occurring in southern African Bantu-speaking Negroids, with an overall prevalence of 1/3,900. The OCA2 gene, P, has been mapped to chromosome 15q11-q13, and recently alterations in the P gene have been identified in OCA2 individuals. An intragenic deletion has been described and proposed to be of African origin because of its occurrence in four unrelated African American OCA2 individuals and in two individuals, one from Zaire and the other from Cameroon. This study shows that the intragenic deletion is a common cause of OCA2 in southern African Negroids (114/146 [.78]; OCA2 chromosomes) and is associated with one common haplotype (43/55 [.78]; OCA2 chromosomes), confirming the African origin of this allele. On the basis of haplotype data, it would appear that at least seven additional, less frequent OCA2 mutations occur in this population.  相似文献   

20.
Although the G protein-coupled receptors (GPCRs) share a similar seven-transmembrane domain structure, only a limited number of amino acid residues is conserved in their protein sequences. One of the most highly conserved sequences is the NPXXY motif located at the cytosolic end of the transmembrane region-7 of many GPCRs, particularly of those belonging to the family of the rhodopsin/beta-adrenergic-like receptors. Exchange of Tyr(305) in the corresponding NPLVY sequence of the bradykinin B(2) receptor (B(2)R) for Ala resulted in a mutant, termed Y305A, that internalized [(3)H]bradykinin (BK) almost as rapidly as the wild-type (wt) B(2)R. However, receptor sequestration of the mutant after stimulation with BK was clearly reduced relative to the wt B(2)R. Confocal fluorescence microscopy revealed that, in contrast to the B(2)R-enhanced green fluorescent protein chimera, the Y305A-enhanced green fluorescent protein chimera was predominantly located intracellularly even in the absence of BK. Two-dimensional phosphopeptide analysis showed that the mutant Y305A constitutively exhibited a phosphorylation pattern similar to that of the BK-stimulated wt B(2)R. Ligand-independent Y305A internalization was demonstrated by the uptake of rhodamine-labeled antibodies directed to a tag sequence at the N terminus of the mutant receptor. Co-immunoprecipitation revealed that Y305A is precoupled to G(q/11) without activating the G protein because the basal accumulation rate of inositol phosphate was unchanged as compared with wt B(2)R. We conclude, therefore, that the Y305A mutation of B(2)R induces a receptor conformation which is prone to ligand-independent phosphorylation and internalization. The mutated receptor binds to, but does not activate, its cognate heterotrimeric G protein G(q/11), thereby limiting the extent of ligand-independent receptor internalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号