首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiogenesis is essential for normal mammalian development and is controlled by the local balance of pro- and antiangiogenic factors. Here we describe a novel mouse cDNA sequence encoding sFLT-1 that is a potent antagonist to vascular endothelial growth factor (VEGF) and show for the first time its in vivo production. In situ hybridization and Northern blot analysis with probes specific for sFLT-1 or FLT-1 showed that the relative abundance of their mRNAs changed markedly in spongiotrophoblast cells in the placenta as gestation progressed. On day 11 of pregnancy, sFLT-1 mRNA was undetectable but FLT-1 readily apparent, and by day 17 sFLT-1 mRNA was abundant but FLT-1 barely detectable. sFLT-1 was identified in conditioned medium of cultured placenta from day 17 pregnant mice and likely to be present in the circulation, as there is a substantial increase of VEGF-binding activity in the serum from day 13 of pregnancy, which coincides with the abundant sFLT-1 expression in placenta. Expression of sFLT-1 was also observed in adult lung, kidney, liver, and uterus. These data suggest a novel mechanism of regulation of angiogenesis by alternative splicing of FLT-1 pre-mRNA. Treatment of pregnant mice with exogenous VEGF from day 9 to 17 of pregnancy, which alters the ratio of VEGF to sFLT-1, resulted in an increase in the number of resorption sites and fibrin deposition in the placenta of ongoing pregnancies. These findings have important implications for understanding placental function and may be relevant in a range of disease states.  相似文献   

2.
The pathogenetic role of vascular endothelial growth factor (VEGF) in long-term retinal and kidney complications of diabetes has been demonstrated. Conversely, little is known in diabetic neuropathy. We examined the modulation of VEGF pathway at mRNA and protein level on dorsal root ganglion (DRG) neurons and Schwann cells (SC) induced by hyperglycaemia. Moreover, we studied the effects of VEGF neutralization on hyperglycemic DRG neurons and streptozotocin-induced diabetic neuropathy. Our findings demonstrated that DRG neurons were not affected by the direct exposition to hyperglycaemia, whereas showed an impairment of neurite outgrowth ability when exposed to the medium of SC cultured in hyperglycaemia. This was mediated by an altered regulation of VEGF and FLT-1 receptors. Hyperglycaemia increased VEGF and FLT-1 mRNA without changing their intracellular protein levels in DRG neurons, decreased intracellular and secreted protein levels without changing mRNA level in SC, while reduced the expression of the soluble receptor sFLT-1 both in DRG neurons and SC. Bevacizumab, a molecule that inhibits VEGF activity preventing the interaction with its receptors, restored neurite outgrowth and normalized FLT-1 mRNA and protein levels in co-cultures. In diabetic rats, it both prevented and restored nerve conduction velocity and nociceptive thresholds. We demonstrated that hyperglycaemia early affected neurite outgrowth through the impairment of SC-derived VEGF/FLT-1 signaling and that the neutralization of SC-secreted VEGF was protective both in vitro and in vivo models of diabetic neuropathy.  相似文献   

3.
The splice forms of vascular endothelial growth factor (VEGF) differ in biological properties such as the receptor types that they recognize and their interaction with heparan sulfate proteoglycans. We have identified a new VEGF mRNA splice form encoding a VEGF species containing 162 amino acids (VEGF(162)) in human A431 ovarian carcinoma cells. This novel mRNA contains the peptides encoded by exons 1-5, 6A, 6B, and 8 of the VEGF gene. Recombinant VEGF(162) is biologically active. It induces proliferation of endothelial cells in vitro and angiogenesis in vivo as determined by the alginate bead assay. VEGF(162) binds less efficiently than VEGF(145) but more efficiently than VEGF(165) to a natural basement membrane produced by corneal endothelial cells. VEGF(138), an artificial VEGF form that contains exon 6B but lacks exons 6A and 7, did not bind to this basement membrane at all, indicating that exon 6B probably interferes with the interaction of exon 6A with heparin and heparan sulfate proteoglycans.  相似文献   

4.
Vascular endothelial growth factor (VEGF) induces the proliferation of endothelial cells and is a potent angiogenic factor that binds to heparin. We have therefore studied the effect of heparin upon the interaction of VEGF with its receptors. Heparin, at concentrations ranging from 0.1 to 10 micrograms/ml, strongly potentiated the binding of 125I-VEGF to its receptors on endothelial cells. Scatchard analysis of 125I-VEGF binding indicates that 1 microgram/ml heparin induces an 8-fold increase in the apparent density of high affinity binding sites for VEGF, but does not significantly affect the dissociation constant of VEGF. Cross-linking experiments showed that heparin strongly potentiates the formation of the 170-, 195- and 225-kDa 125I-VEGF-receptor complexes on endothelial cells. At high 125I-VEGF concentrations (4 ng/ml), heparin preferentially enhanced the formation of the 170- and 195-kDa complexes. Preincubation of the cells with heparin, followed by extensive washes, produced a similar enhancement of subsequent 125I-VEGF binding. The binding of 125I-VEGF was completely inhibited following digestion of endothelial cells with heparinase and could be restored by the addition of exogenous heparin to the digested cells. The enhancing effect of heparin facilitated the detection of VEGF receptors on cell types that were not known previously to express such receptors. Our results suggest that cell surface-associated heparin-like molecules are required for the interaction of VEGF with its cell surface receptors.  相似文献   

5.
Plasminogen activator inhibitor-1 (PAI-1) is a serpin protease inhibitor that binds plasminogen activators (uPA and tPA) at a reactive center loop located at the carboxyl-terminal amino acid residues 320-351. The loop is stretched across the top of the active PAI-1 protein maintaining the molecule in a rigid conformation. In the latent PAI-1 conformation, the reactive center loop is inserted into one of the beta sheets, thus making the reactive center loop unavailable for interaction with the plasminogen activators. We truncated porcine PAI-1 at the amino and carboxyl termini to eliminate the reactive center loop, part of a heparin binding site, and a vitronectin binding site. The region we maintained corresponds to amino acids 80-265 of mature human PAI-1 containing binding sites for vitronectin, heparin (partial), uPA, tPA, fibrin, thrombin, and the helix F region. The interaction of "inactive" PAI-1, rPAI-1(23), with plasminogen and uPA induces the formation of a proteolytic protein with angiostatin properties. Increasing amounts of rPAI-1(23) inhibit the proteolytic angiostatin fragment. Endothelial cells exposed to exogenous rPAI-1(23) exhibit reduced proliferation, reduced tube formation, and 47% apoptotic cells within 48 h. Transfected endothelial cells secreting rPAI-1(23) have a 30% reduction in proliferation, vastly reduced tube formation, and a 50% reduction in cell migration in the presence of VEGF. These two studies show that rPAI-1(23) interactions with uPA and plasminogen can inhibit plasmin by two mechanisms. In one mechanism, rPAI-1(23) cleaves plasmin to form a proteolytic angiostatin-like protein. In a second mechanism, rPAI-1(23) can bind uPA and/or plasminogen to reduce the number of uPA and plasminogen interactions, hence reducing the amount of plasmin that is produced.  相似文献   

6.
Vitronectin (VN) is a high affinity heparin-binding protein. The physiological role of this binding has hitherto received little attention, and its molecular determinants are subject to controversy. In this study, we characterized vitronectin interaction with heparin, heparin analogues, bacterial extracts, and cell surface glycosaminoglycans. As assessed by (i) fluorescence assays, (ii) precipitation with heparin-Sepharose beads, or (iii) Western blotting with antibodies against VN(347-361) (the heparin-binding site), we demonstrate an exposure of the VN heparin-binding site in multimeric but not monomeric vitronectin. Through its heparin-binding site, vitronectin also bound other glycosaminoglycans and Staphylococcus aureus extracts. The kinetics of heparin binding to vitronectin were complex. After a fast association phase (tau = 0.3 s), a slow conversion of an unstable to a stable heparin-vitronectin complex (tau = 180 s) occurred. Heparin binding kinetics and transition to a stable complex were mimicked by VN(347-361), demonstrating that this area is the fully functional heparin-binding site of vitronectin. Multimeric vitronectin bound to endothelial cells. This binding was blocked by soluble heparin and was not observed when endothelial cells were pretreated with glycosaminoglycan-removing enzymes. Glycosaminoglycan-dependent interaction of endothelial cells with multimeric vitronectin might be a relevant mechanism for removal of multimeric vitronectin from plasma. Conversion of an unstable to a stable glycosaminoglycan-vitronectin complex is likely to be relevant for association with endothelial cells under flow conditions.  相似文献   

7.
Vascular endothelial growth factor (VEGF) receptor activation regulates endothelial cell (EC) survival, migration and proliferation. Recently, it was suggested the cross-talk between the VEGF receptors-1 (FLT-1) and -2 (KDR) modulated several of these functions, but the detailed molecular basis for such interactions remained unexplained. Here we demonstrate for the first time that VEGF stimulation of EC monolayers induced a rapid FLT-1-mediated internalization of KDR to the nucleus, via microtubules and the endocytic pathway, internalization which required the activation of PI 3-kinase/AKT. KDR deletion mutants were generated in several tyrosine residues; in these, VEGF-induced KDR internalization was impaired, demonstrating this process required activation (phosphorylation) of the receptor. Furthermore, we demonstrate that in vitro wounding of EC monolayers leads to a rapid and transient internalization of VEGF+KDR to the nucleus, which is essential for monolayer recovery. Notably, FLT-1 blockade impedes VEGF and KDR activation and internalization, blocking endothelial monolayer recovery. Our data reveal a previously unrecognized mechanism induced by VEGF on EC, which regulates EC recovery following wounding, and as such indicate novel targets for therapeutic intervention.  相似文献   

8.
Chicken muscle and retina, and rat muscle asymmetric acetylcholinesterase (AChE) species were bound to immobilized heparin at 0.4 M NaCl. Binding efficiency was between 50 and 80% for crude fraction I A-forms (AI; muscle), and nearly 100% for fraction II A-forms (AII; muscle and retina). Antibody-affinity-purified AI-forms (chicken) were, however, quantitatively bound to heparin-agarose gels, whereas diisopropylfluorophosphate-inactivated high-salt extracts partially prevented the binding of both AI and AII AChE forms, thus suggesting the presence in crude AI extracts of heparin-like molecules interfering with the tail-heparin interaction. All bound A-forms were progressively displaced from the heparin-agarose columns by increasing salt concentrations, with maximal release at about 0.6 M. They were also efficiently eluted by heparin solutions (1 mg/ml), other glycosaminoglycans being much less effective. Chicken globular AChE forms (G-forms, both low-salt-soluble and detergent-soluble) also bound to immobilized heparin in the absence of salt. Stepwise elution with increasing NaCl concentrations showed maximal release of G-forms at 0.15 M, all globular forms being totally displaced from the column at 0.4 M NaCl. Heparin (1 mg/ml) had the same eluting capacity as 0.4 M NaCl, whereas other glycosaminoglycans were only marginally effective. We conclude that the molecular forms of AChE in these vertebrate species interact with heparin, at salt concentrations that are characteristic for asymmetric and globular forms. Within the A and G molecular form groups, no differences were found in the behavior of the different fractions or subtypes, provided that the enzyme samples were free of interfering molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Angiogenesis, the growth of new blood vessels, is regulated by a number of factors, including hypoxia and vascular endothelial growth factor (VEGF). Although the effects of hypoxia have been studied intensely, less attention has been given to other extracellular parameters such as pH. Thus, the present study investigates the consequences of acidic pH on VEGF binding and activity in endothelial cell cultures. We found that the binding of VEGF165 and VEGF121 to endothelial cells increased as the extracellular pH was decreased from 7.5 to 5.5. Binding of VEGF165 and VEGF121 to endothelial extracellular matrix was also increased at acidic pH. These effects were, in part, a reflection of increased heparin binding, because VEGF165 and VEGF121 showed increased retention on heparin-Sepharose at pH 5.5 compared with pH 7.5. Consistent with these findings, soluble heparin competed for VEGF binding to endothelial cells under acidic conditions. However, at neutral pH (7.5) low concentrations of heparin (0.1-1.0 microg/ml) potentiated VEGF binding. Extracellular pH also regulated VEGF activation of the extracellular signal-regulated kinases 1 and 2 (Erk1/2). VEGF165 and VEGF121 activation of Erk1/2 at pH 7.5 peaked after 5 min, whereas at pH 6.5 the peak was shifted to 10 min. At pH 5.5, neither VEGF isoform was able to activate Erk1/2, suggesting that the increased VEGF bound to the cells at low pH was sequestered in a stored state. Therefore, extracellular pH might play an important role in regulating VEGF interactions with cells and the extracellular matrix, which can modulate VEGF activity.  相似文献   

10.
Neuropilin-1 (np-1) and neuropilin-2 (np-2) are receptors for axon guidance factors belonging to the class 3 semaphorins. np-1 also binds to the 165-amino acid heparin-binding form of VEGF (VEGF(165)) but not to the shorter VEGF(121) form, which lacks a heparin binding ability. We report that human umbilical vein-derived endothelial cells express the a17 and a22 splice forms of the np-2 receptor. Both np-2 forms bind VEGF(165) with high affinity in the presence of heparin (K(D) 1.3 x 10(-10) m) but not VEGF(121). np-2 also binds the heparin-binding form of placenta growth factor. These binding characteristics resemble those of np-1. VEGF(145) is a secreted heparin binding VEGF form that contains the peptide encoded by exon 6 of VEGF but not the peptide encoded by exon 7, which is present in VEGF(165). VEGF(145) binds to np-2 with high affinity (K(D) 7 x 10(-10) m). Surprisingly, VEGF(145) did not bind to np-1. Indeed, VEGF(145) does not bind to MDA-MB-231 breast cancer cells, which predominantly express np-1. By contrast, VEGF(145) binds to human umbilical vein-derived endothelial cells, which express both np-1 and np-2. The binding of VEGF(165) to porcine aortic endothelial cells expressing recombinant np-2 did not affect the proliferation or migration of the cells. Nevertheless, it is possible that VEGF-induced np-2-mediated signaling will take place only in the presence of other VEGF receptors such as VEGF receptor-1 or VEGF receptor-2.  相似文献   

11.
《The Journal of cell biology》1984,99(4):1545-1549
Bovine retina and hypothalamus contain anionic endothelial cell mitogens that display unusual affinities for the negatively charged glycosaminoglycan heparin. Both growth factor activities are acidic polypeptides (pl's of 5.0) as determined by isoelectric focusing and DEAE-affinity chromatography. In spite of their anionic nature, the factors bound to heparin-Sepharose columns with high affinity and could be eluted only at high salt concentrations (0.9-1.1 M NaCl). The affinity of the retina-derived growth factor (RDGF) for heparin permitted a 15,000-fold purification of the mitogen in two steps: heparin-affinity chromatography and size exclusion high-performance liquid chromatography. RDGF and the anionic hypothalamus-derived factor (aHDGF) exhibit three major biochemical similarities including isoelectric point, (pl's of 5.0), heparin affinity (elution at 0.9-1.1 M NaCl) and molecular weight (18,000). Additionally, the two factors display similar biological activities, stimulating the proliferation of capillary and human umbilical vein endothelial and 3T3 cells but not vascular smooth muscle cells. We suggest that RDGF and aHDGF are related if not identical growth factor molecules.  相似文献   

12.
Neuropilin-1 (NP-1) was first identified as a semaphorin receptor involved in neuron guidance. Subsequent studies demonstrated that NP-1 also binds an isoform of vascular endothelial growth factor (VEGF) as well as several VEGF homologs, suggesting that NP-1 may also function in angiogenesis. Here we report in vitro binding experiments that shed light on the interaction between VEGF165 and NP-1, as well as a previously unknown interaction between NP-1 and one of the VEGF receptor tyrosine kinases, VEGFR1 or Flt-1. BIAcore analysis demonstrated that, with the extracellular domain (ECD) of NP-1 immobilized at low density, VEGF165 bound with low affinity (K(d) = 2 microm) and fast kinetics. The interaction was dependent on the heparin-binding domain of VEGF165 and increased the affinity of VEGF165 for its signaling receptor VEGFR2 or kinase insert domain-containing receptor. The affinity of VEGF165 for the NP-1 ECD was greatly enhanced either by increasing the density of immobilized NP-1 (K(d) = 113 nm) or by the addition of heparin (K(d) = 25 nm). We attribute these affinity enhancements to avidity effects mediated by the bivalent VEGF165 homodimer or multivalent heparin. We also show that the NP-1 ECD binds with high affinity (K(d) = 1.8 nm) to domains 3 and 4 of Flt-1 and that this interaction inhibits the binding of NP-1 to VEGF165. Based on these results, we propose that NP-1 acts as a coreceptor for various ligands and that these functions are dependent on the density of NP-1 on the cell membrane. Furthermore, Flt-1 may function as a negative regulator of angiogenesis by competing for NP-1.  相似文献   

13.
The 165 amino acid form of vascular endothelial growth factor (VEGF165) is a heparin-binding growth factor with mitogenic activity for vascular endothelial cells. We examined activities of various heparin derivatives toward their interactions with VEGF165 using an enzyme-linked immunosorbent assay and elucidated the structural features in heparin for the interactions. Native heparin interacted with VEGF165, whereas N-desulfated, N-acetylated (N-DS, N-Ac-) heparin, and 6-O-desulfated (6-O-DS-) heparin did not. The 2-O-desulfated (2-O-DS-) heparin retained the ability for the interaction with VEGF165. In contrast, the 2-O-DS-heparin exhibited no ability for the interaction with FGF-2 and HGF. Thus, structural requirements in heparin for the specific interaction with VEGF165 are distinct from those with FGF-2 and HGF which require a high content of 2-O-sulfate groups. In a cell proliferation assay, native heparin and 2-O-DS-heparin exhibited inhibitory abilities for VEGF165-induced proliferation of human umbilical vein endothelial cells (HUVECs) with their high concentrations (more than 64 microg/ml), while only native heparin could enhance the proliferation of the chlorate-treated cells. These results suggested that a high content of 2-O-sulfate groups is not required for the specific interaction with VEGF165alone, although it is essential for the mitogenic activity of the growth factor.  相似文献   

14.
Vascular endothelial growth factor (VEGF) is a family of glycoproteins with potent angiogenic activity. We reported previously that heparin has an affinity for VEGF165, the major isoform of VEGF, whereas 2-O-desulfated heparin and 6-O-desulfated heparin have weak but significant affinity (Ashikari-Hada, S., Habuchi, H., Kariya, Y., Itoh, N., Reddi, A. H., and Kimata, K. (2004) J. Biol. Chem. 279, 12346-12354). In this study, we first examined the effect of heparin and modified heparins (completely desulfated N-sulfated heparin, 2-O-desulfated heparin, and 6-O-desulfated heparin) on VEGF165-dependent mitogenic activity and tube formation on type I collagen gels of human umbilical vein endothelial cells. Both were enhanced by heparin, but not by modified heparins, suggesting that both the 2-O-sulfate group of hexuronic acid and the 6-O-sulfation group of N-sulfoglucosamine in heparin/heparan sulfate are necessary for VEGF165 activity. We then examined the activation of VEGF receptor (VEGFR) to understand the mechanism. We have made several new findings; 1) heparin yielded a 1.7-fold enhancement of VEGF165-induced phosphorylation of VEGFR-2; 2) depletion of cell surface heparan sulfate by heparinase/heparitinase treatment and preferential reduction of trisulfated disaccharide units of cell surface HS by sodium chlorate treatment resulted in the reduction of such phosphorylation, suggesting the involvement of a heparin-like domain in the phosphorylation of VEGFR-2; and 3) VEGF121, an isoform without the exon 7-encoded region, which has no capacity to bind to heparin, did not show these effects. It is therefore likely that a heparin-like domain of heparan sulfate/heparin forms a complex with VEGF165 and VEGFR-2 via the exon 7-encoded region, thereby enhancing VEGF165-dependent signaling.  相似文献   

15.
alpha(2)-Macroglobulin (alpha(2)M) is a highly conserved proteinase inhibitor present in human plasma at high concentration (2-4 mg/ml). alpha(2)M exists in two conformations, a native form and an activated, receptor-recognized form. While alpha(2)M binds to numerous cytokines and growth factors, in most cases, the nature of the alpha(2)M interaction with these factors is poorly understood. We examined in detail the interaction between alpha(2)M and vascular endothelial growth factor (VEGF) and found a novel and unexpected mechanism of interaction as demonstrated by the following observations: 1) the binding of VEGF to alpha(2)M occurs at a site distinct from the recently characterized growth factor binding site; 2) VEGF binds different forms of alpha(2)M with distinct spatial arrangement, namely to the interior of methylamine or ammonia-treated alpha(2)M and to the exterior of native and proteinase-converted alpha(2)M; and 3) VEGF (molecular mass approximately 40 kDa) can access the interior of receptor-recognized alpha(2)M in the absence of a proteinase trapped within the molecule. VEGF bound to receptor-recognized forms of alpha(2)M is internalized and degraded by macrophages via the alpha(2)M receptor, the low density lipoprotein receptor-related protein. Oxidation of both native and receptor-recognized alpha(2)M results in significant inhibition of VEGF binding. We also examined the biological significance of this interaction by studying the effect of alpha(2)M on VEGF-induced cell proliferation and VEGF-induced up-regulation of intracellular Ca(2+) levels. We demonstrate that under physiological conditions, alpha(2)M does not impact the ability of VEGF to induce cell proliferation or up-regulate Ca(2+).  相似文献   

16.
Endothelial-like cells derived from human CD14 positive monocytes   总被引:30,自引:0,他引:30  
In the present study, we show that endothelial-like cells (ELCs) can develop from human CD14-positive mononuclear cells (CD14 cells) in the presence of angiogenic growth factors. The CD14 cells became loosely adherent within 24 h of culture and subsequently underwent a distinct process of morphological transformation to caudated or oval cells with eccentric nuclei. After 1 week in culture the cells showed a clear expression of endothelial cell markers, including von Willebrand factor (vWF), CD144 (VE-cadherin), CD105 (endoglin), acetylated low-density lipoprotein (AC-LDL)-receptor, CD36 (thrombospondin receptor), FLT-1, which is vascular endothelial cell growth factor (VEGF) receptor-1, and, to a weaker extent, KDR (VEGF receptor-2). Furthermore, in these cells structures resembling Weibel-Palade bodies at different storage stages were identified by electron microscopy, and upon culturing on three-dimensional fibrin gels the cells build network-like structures. In addition, cell proliferation and vWF expression was stimulated by VEGF, and the endothelial cell adhesion molecules CD54 (ICAM-1), and CD106 (VCAM-1) became transiently inducible by tumor necrosis factor-alpha (TNF-alpha). In contrast, the dendritic markers CD1a, and CD83 were not expressed to any significant extent. The expression of CD68, CD80 (B7-1), CD86 (B7-2), HLA-DR and CD36 may also suggest that ELCs might be related to macrophages, sinus lining or microvascular endothelial cells. Taken together, our observations indicate that ELCs can differentiate from cells of the monocytic lineage, suggesting a closer relationship between the monocyte/macrophage- and the endothelial cell systems than previously supposed.  相似文献   

17.
VEGF receptors 1 (FLT-1) and 2 (KDR) are expressed on subsets of acute myeloid leukemia (AML) and acute lymphoid leukemia cells, in which they induce cell survival, proliferation, and migration. However, little is known about possible cofactors that regulate VEGF receptor expression and activation on leukemia cells. Here we show that cholesterol accumulates in leukemia-rich sites within bone marrow of xenotransplanted severe combined immunodeficient (SCID) mice. Therefore, we hypothesized that cholesterol-rich domains might regulate FLT-1 signaling and chemotaxis of acute leukemias. We then showed that FLT-1 accumulates in discrete cholesterol-rich membrane domains where it associates with caveolin-1 and that placenta growth factor (PlGF)/VEGF stimulation promotes FLT-1 localization in such cholesterol-rich domains. Accordingly, FLT-1 localization and its phosphorylation are abrogated by methyl-β-cyclodextrin (MβCD), which removes cellular cholesterol, and by nystatin, an inhibitor of lipid-raft endocytosis. Mechanistically, cholesterol increases FLT-1 expression and promotes PlGF/VEGF-induced leukemia cells viability and also induces VEGF production by the leukemia cells in vitro. Taken together, we conclude that cholesterol regulates VEGF:VEGFR-1 signaling on subsets of acute leukemias, modulating cell migration, and viability, which may be crucial for disease progression. Finally, we provide evidence obtained from human AML samples that primary leukemia cells accumulate significantly more cholesterol than do normal cells and that cholesterol accumulation correlates with disease aggressiveness.  相似文献   

18.
Jeong KW  Lee JY  Lee SA  Yang SP  Ko H  Kang DI  Chae CB  Kim Y 《Biochemistry》2011,50(22):4843-4854
Vascular endothelial growth factor (VEGF), which has neurotrophic and neuroprotective effects in addition to its major role in angiogenesis, interacts with Aβ and accumulates in the senile plaques of Alzheimer's disease (AD) patients' brains. It is known that Aβ binds to the heparin-binding domain (HBD) of the 165-amino acid VEGF variant, VEGF(165). In this study, we showed that triamterene (Trm) inhibits VEGF--Aβ interaction without affecting other biological activities of VEGF or Aβ. We investigated the importance of structural and dynamic features of HBD for its molecular-recognition processes. The binding model of HBD and Trm was constructed based on measurements of chemical shift changes and docking study. The results showed that the loop region (S11-L17) and F18 at the beginning of the first β-sheet in the HBD constitute the inhibitor binding site. The N1 atom of pteridine ring of Trm forms hydrogen bonding with backbone amide proton of R13, and the phenyl ring took part in a hydrophobic interaction with the aromatic ring of F18. To investigate the functional importance of the inherent structural flexibility of the HBD in VEGF, the dynamic properties of free HBD and HBD--Trm complex were assessed by measuring spin relaxation rates, and the backbone dynamics were investigated by model-free analysis. The residues in the disordered loop region of the N-terminus exhibited conformational exchanges in free HBD, and flexibility of this loop region decreased dramatically upon binding to Trm, suggesting that Aβ as well as inhibitor may recognize these unique dynamic features of the HBD. Furthermore, C-terminal residues continued to exhibit slow conformational motions, even in the HBD--Trm complex, implying that these motions at the C-terminus of the HBD might be important for interactions with heparin molecules. The flexibility of HBD demonstrated here should be essential for VEGF function and interaction with other protein partners.  相似文献   

19.
Glypican-1 is a member of a family of glycosylphosphatidylinositol anchored cell surface heparan sulfate proteoglycans implicated in the control of cellular growth and differentiation. The 165-amino acid form of vascular endothelial growth factor (VEGF165) is a mitogen for endothelial cells and a potent angiogenic factor in vivo. Heparin binds to VEGF165 and enhances its binding to VEGF receptors. However, native HSPGs that bind VEGF165 and modulate its receptor binding have not been identified. Among the glypicans, glypican-1 is the only member that is expressed in the vascular system. We have therefore examined whether glypican-1 can interact with VEGF165. Glypican-1 from rat myoblasts binds specifically to VEGF165 but not to VEGF121. The binding has an apparent dissociation constant of 3 x 10(-10) M. The binding of glypican-1 to VEGF165 is mediated by the heparan sulfate chains of glypican-1, because heparinase treatment abolishes this interaction. Only an excess of heparin or heparan sulfates but not other types of glycosaminoglycans inhibited this interaction. VEGF165 interacts specifically not only with rat myoblast glypican-1 but also with human endothelial cell-derived glypican-1. The binding of 125I-VEGF165 to heparinase-treated human vascular endothelial cells is reduced following heparinase treatment, and addition of glypican-1 restores the binding. Glypican-1 also potentiates the binding of 125I-VEGF165 to a soluble extracellular domain of the VEGF receptor KDR/flk-1. Furthermore, we show that glypican-1 acts as an extracellular chaperone that can restore the receptor binding ability of VEGF165, which has been damaged by oxidation. Taken together, these results suggest that glypican-1 may play an important role in the control of angiogenesis by regulating the activity of VEGF165, a regulation that may be critical under conditions such as wound repair, in which oxidizing agents that can impair the activity of VEGF are produced, and in situations were the concentrations of active VEGF are limiting.  相似文献   

20.
Vasculotropin/vascular endothelial cell growth factor (VAS/VEGF) is a newly purified growth factor with a unique specificity for vascular endothelial cells. We have investigated the interactions of VAS/VEGF with human umbilical vein endothelial cells (HUVE cells). 125I-VAS/VEGF was bound to HUVE cells in a saturable manner with a half-maximum binding at 2.8 ng/ml. Scatchard analysis did show two classes of high-affinity binding sites. The first class displayed a dissociation constant of 9 pM with 500 sites/cell. The dissociation constant and the number of binding sites of the second binding class were variable for different HUVE cell cultures (KD = 179 ± 101 pM, 5,850 ± 2,950 sites/cell). Half-maximal inhibition of 125I-VAS/VEGF occurred with a threefold excess of unlabeled ligand. Basic fibroblast growth factor (bFGF) and heparin did not compete with 125I-VAS/VEGF binding. In contrast, suramin and protamin sulfate completely displaced 125I-VAS/VEGF binding from HUVE cells. VAS/VEGF was shown to be internalized in HUVE cells. Maximum internalization (55% of total cell-associated radioactivity) was observed after 30 min. 125I-VAS/VEGF was completely degraded 2–3 hr after binding. At 3 hr, the trichloroacetic acid (TCA)-soluble radioactivity accumulated in the medium was 60% of the total radioactivity released by HUVE cells. No degradation fragment of 125I-VAS/VEGF was observed. Chloroquine completely inhibited degradation. VAS/VEGF was able to induce angiogenesis in vitro in HUVE cells. However, it did not significantly modulate urokinase-type plasminogen activator (u-PA), tissue-type plasminogen activator (t-PA), plasminogen activator inhibitor (PAI-1), and tissue factor (TF). Prostacyclin production was only stimulated at very high VAS/VEGF concentrations. Taken together, these results indicate that VAS/VEGF might be a potent inducer of neovascularization resulting from a direct interaction with endothelial cells. The angiogenic activity seems to be independent of the plasminogen activator or inhibitor system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号