首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been hypothesized that populations at the margins of the distributional range of a species show reduced genetic diversity and increased inter-population differentiation compared to central populations. Here, we test this hypothesis by examining the structure of genetic diversity in marginal populations of black poplar, Populus nigra L. (Salicaceae). This species occurs mainly in Europe but its range extends to central Asia. We collected 117 individuals from 10 populations at the edge of the distributional range of the species in central Asia to examine the structure of genetic diversity based on genetic polymorphisms at 20 microsatellite markers. As expected, the genetic diversity within these marginal populations is relatively low, with an average observed heterozygosity Ho of 0.337 and an average expected heterozygosity He of 0.466, compared to the genetic diversity of populations from central distributions. However, we recovered very low genetic differentiation between populations, with an average Fst of 0.0745, a value similar to those reported for central populations. AMOVA analyses confirmed this result, showing that only 9.2% of the total variation could be attributed to between-population variance (P < 0.001). Our findings do not fully support hypotheses about the structure of genetic diversity in marginal populations formed from observations on other species. We suggest that a high rate of outcrossing and possible postglacial colonization at the edge of the distributional range of this long-lived poplar may explain the observed structure of the genetic diversity.  相似文献   

2.
Endemic island plant species with a narrow distribution are often, but not always, linked to low genetic variation within populations and a lack of differentiation among populations. Cedrus brevifolia is a narrow endemic island tree species of Cyprus. Its range is restricted to a single forest, divided into five neighbouring sites. This study, using biparentally inherited nuclear microsatellites and paternally inherited plastid (chloroplast) microsatellites, assessed the genetic variation of C. brevifolia within its sole population and the level of genetic differentiation among formed sites. The results from both markers showed high diversity (nuclear H T?=?0.70; plastid H T?=?0.93), strongly suggesting that the species did not experience severe bottleneck events or extensive genetic drift. Besides, the maintenance of a high genetic diversity in C. brevifolia may suggest that it originates from a widespread congener species. Significant genetic differentiation at nuclear (G ST?=?0.052) and plastid (G ST?=?0.119) markers was found among the formed sites. Remarkably, the relatively high genetic differentiation found at plastid markers was comparable to values observed in two widespread congener cedar species. The genetic differentiation probably occurred due to fragmentation of a previously uniform population. This would lead to the shaping of different genetic groups (Bayesian analysis) and to significant population substructure. Furthermore, significant values observed for both isolation by distance and large-scale spatial genetic structure could indicate ineffective gene flow among sites and the early geographical isolation of the more isolated sites from the core population.  相似文献   

3.
Abies chensiensis Tieghem and Abies fargesii Franchet are two closely related tree species of Pinaceae endemic to China. A. chensiensis is usually found scattered in small forest fragments, whereas A. fargesii is a dominant member of coniferous forest. To evaluate the genetic effect of fragmentation on A. chensiensis, a total of 24 populations were sampled from the whole distribution of the two species. Seven nuclear microsatellite loci were employed to analyze comparatively the genetic diversity and population genetic differentiation. Both A. chensiensis and A. fargesii have high level within-population genetic diversity and low inter-population genetic differentiation. Low microsatellite differentiation (2.1%) between A. fargesii and A. chensiensis was observed. But microsatellite marker was able to discriminate most populations of these two species. Compared to A. fargesii, A. chensiensi has lower allelic diversity and higher genetic differentiation among populations. It suggested the existence of negative genetic impacts of habitat fragmentation on A. chensiensis.  相似文献   

4.
Omphalogramma souliei Franch. is an endangered perennial herb only distributed in alpine areas of SW China. ISSR markers were applied to determine the genetic variation and genetic structure of 60 individuals of three populations of O. souliei in NW Yunnan, China. The genetic diversity at the species level is low with P=42.5% (percentage of polymorphic bands) and Hsp=0.1762 (total genetic diversity). However, a high level of genetic differentiation among populations was detected based on different measures (Nei's genetic diversity analysis: Gst=0.6038; AMOVA analysis: Fst=0.6797). Low level of genetic diversity within populations and significant genetic differentiation among populations might be due to the mixed mating system in which xenogamy predominated and autogamy played an assistant role in O. souliei. The genetic drift due to small population size and limited current gene flow also resulted in significant genetic differentiation. The assessment of genetic variation and differentiation of the endangered species provides important information for conservation on a genetic basis. Conservation strategies for this rare endemic species are proposed.  相似文献   

5.
The contribution of soil seed bank of a desert endemic plant species in maintaining genetic diversity has been addressed in this paper through investigating the differences in genetic diversity and structure (using AFLP markers) between plants grown from soil seed bank and standing crop plants within and among five populations of H. sinaicum growing at St. Katherine Protectorate, southern Sinai, Egypt. Standard genetic diversity measures showed that the molecular variation within and among populations was highly significantly different between standing crop and soil seed bank. While soil seed bank had lower genetic diversity than standing crop populations, pooling soil seed bank with standing crop samples resulted in higher diversity. The results revealed also that soil seed bank had lower differentiation (7 %) than among populations of the standing crop (18 %). Results of neighbor-joining, Bayesian clustering and principal coordinate analysis showed that soil seed banks had a separate gene pool different from standing crop. The study came to the conclusion that the genetic variation of the soil seed bank contributes significantly to the genetic variation of the species. This also stresses the importance of elucidating the genetic diversity and structure of the soil seed bank for any sound and long-term conservation efforts for desert species. These have been growing in small-size populations for a long time that any estimates gained only from aboveground sampling of populations may be ambiguous.  相似文献   

6.
Inter-simple sequence repeat markers (ISSR) were used to estimate genetic diversity within and among 10 populations of Rhodiola chrysanthemifolia along Nianqingtangula Mountains and Brahmaputra, a species endemic to the Qinghai-Tibet Plateau and an endangered medicinal plant. Of the 100 primers screened, 13 produced highly polymorphic DNA fragments. Using these primers, 116 discernible DNA fragments were generated of which 104 (89.7%) were polymorphic, indicating substantial genetic diversity at the species level. Genetic diversity measured by the percentage of polymorphic bands (PPB) at the population level ranged from 21.97% to 48.8%. Analysis of molecular variance (AMOVA) showed that the genetic variation was found mainly among populations (77.3%), but no regional differentiation was discernible. Variance within populations was only 22.7%. The main factor responsible for this high level of differentiation among populations is probably the historical geographical and genetic isolation of populations in a harsh mountainous environment. Concerning the management of R. chrysanthemifolia, the high genetic differentiation of populations indicates the necessity of conserving the maximum possible number of populations.  相似文献   

7.
The burnet moth Zygaena anthyllidis, endemic to the high elevations of the Pyrenees, is vulnerable to land-use. In order to identify conservation priorities based on an assessment of genetic diversity within populations and gene flow among populations, we examined Z. anthyllidis’ genetic variability and differentiation based on allozyme electrophoresis from seven populations scattered across its entire range. In comparison to other mountain Lepidoptera, the populations studied exhibit a low level of genetic diversity. Remarkable between-population differentiation (F ST = 0.053), the presence of private alleles, and the lack of significant isolation-by-distance pattern characterises the genetic make-up of the species. We interpreted the pattern of genetic differentiation as a consequence of low dispersal power in combination with insufficient landscape connectivity. Ongoing land-use change might reinforce genetic differentiation due to habitat fragmentation and additionally affect negatively allozyme variability at shifting range margins, i.e. the capacity to adapt to changing environments. We therefore suggest creating a network of suitable habitats at the landscape scale to facilitate genetic exchange and to conserve the species’ overall genetic variability.  相似文献   

8.
Cycas debaoensis is a critically endangered cycad species endemic to China. This species is found on two kinds of habitats according to the edaphic differences, sand and karst. A previous chloroplast DNA (cpDNA) study indicated that C. debaoensis had low genetic variation within populations and high genetic differentiation among populations. Because maternally inherited cpDNA does not fully characterize genetic structure of the species, we screened seven low-copy nuclear genes and 17 nuclear microsatellite loci to detect the nuclear genetic diversity, differentiation, and the population structure of C. debaoensis. The nuclear genes revealed higher level of genetic diversity. There were both the same and region-specific haplotypes or alleles between the karst and sand regions. Nuclear gene flow among all the populations was much greater than that of cpDNA, which indicated that pollen-mediated gene flow was much greater than seed-mediated gene flow. This promoted low nuclear genetic differentiation among populations of C. debaoensis. The study suggests that both genetic and anthropogenic disturbances have resulted in the critically endangered status of C. debaoensis.  相似文献   

9.
Bluemask darters (Etheostoma akatulo) were sampled from the four drainages where extant populations of this narrowly endemic freshwater fish are known to exist. Population genetic diversity and structure were assessed at 10 microsatellite loci. All populations exhibited low levels of genetic variation, with expected heterozygosity ranging from 0.2 to 0.35. Significant population subdivision was found among most tributaries, and genetic divergence was strongly correlated with geographic distance. Bayesian population assignment and pairwise population differentiation measures both identified a lack of differentiation between E. akatulo populations inhabiting Cane Creek and the Caney Fork. This observation reduced the number of distinct breeding populations of this species to three. We also used approximate Bayesian computation to compare three models of demographic history in this species. A constant population size model was favored over models that included historic or recent population reductions. Our results suggest that impoundment of the Caney Fork and its tributaries, by completion of Great Falls Dam in 1916, was not responsible for the reduced genetic diversity in the sampled populations. Given the low levels of genetic diversity within populations and the limited geographic distribution, future conservation efforts should seek to maximize available habitat while simultaneously limiting the influences of anthropogenic stressors in the system.  相似文献   

10.
The effect of population size on population genetic diversity and structure has rarely been studied jointly with other factors such as the position of a population within the species’ distribution range or the presence of mutualistic partners influencing dispersal. Understanding these determining factors for genetic variation is critical for conservation of relict plants that are generally suffering from genetic deterioration. Working with 16 populations of the vulnerable relict shrub Cneorum tricoccon throughout the majority of its western Mediterranean distribution range, and using nine polymorphic microsatellite markers, we examined the effects of periphery (peripheral vs. central), population size (large vs. small), and seed disperser (introduced carnivores vs. endemic lizards) on the genetic diversity and population structure of the species. Contrasting genetic variation (HE: 0.04–0.476) was found across populations. Peripheral populations showed lower genetic diversity, but this was dependent on population size. Large peripheral populations showed high levels of genetic diversity, whereas small central populations were less diverse. Significant isolation by distance was detected, indicating that the effect of long‐distance gene flow is limited relative to that of genetic drift, probably due to high selfing rates (FIS = 0.155–0.887), restricted pollen flow, and ineffective seed dispersal. Bayesian clustering also supported the strong population differentiation and highly fragmented structure. Contrary to expectations, the type of disperser showed no significant effect on either population genetic diversity or structure. Our results challenge the idea of an effect of periphery per se that can be mainly explained by population size, drawing attention to the need of integrative approaches considering different determinants of genetic variation. Furthermore, the very low genetic diversity observed in several small populations and the strong among‐population differentiation highlight the conservation value of large populations throughout the species’ range, particularly in light of climate change and direct human threats.  相似文献   

11.
The Mediterranean Basin is a biodiversity hotspot, housing >11.000 narrowly endemic plant species, many of which are declining due to mass tourism and agricultural intensification. To investigate the genetic resource impacts of ongoing habitat loss and degradation, we characterized the genetic variation in the last known populations of Leopoldia gussonei, a self-compatible endangered Sicilian Grape Hyacinth numbering less than 3,000 remaining individuals, using AFLP. Results demonstrated significant genome-wide genetic differentiation among all extant populations (ΦST = 0.05–0.56), and genetic clustering according to geographic location. Gene diversity was fairly constant across population (mean HE = 0.13) and was neither affected by current population size nor by spatial isolation. Vegetation analysis showed the presence of known invasive weeds in a quarter of the populations, but we found no relation between genetic diversity and plant community composition. The marked genetic differences among populations and the profusion of rare and private alleles indicate that any further population loss will lead to significant losses of genetic diversity. Conservation efforts should therefore focus on the preservation of all sites where L. gussonei still occurs, yet the deliberate introduction of diverse material into the smallest populations seems unneeded as clonality likely mitigated genetic drift effects thus far. More generally, our findings support the view that endemic plant species with a narrow ecological amplitude, as many specialists in Mediterranean coastal ecosystems, are highly genetically differentiated and that conservation of their genetic diversity requires preservation of most, if not all of their extant populations.  相似文献   

12.
The Eastern Afromontane biodiversity hotspot consists of isolated mountain massifs embedded within the dry lowland savannas of East Africa and of which the peaks and ridges are covered by cloud forest remnants. These cloud forests are home to the Mountain White-eye (Zosterops poliogaster), while three congeneric species (Abyssinian White-eye, Zosterops abyssinicus; Yellow White-eye, Zosterops senegalensis; Pemba White-eye, Zosterops vaughani) inhabit the adjacent lowland savannas. We sampled individuals of all four species across Kenya to analyse interspecific genetic relationships as well as intraspecific differentiation among mountain populations of Z. poliogaster. While the level of genetic differentiation among the four species was rather low, genetic differentiation within Z. poliogaster was very high, even between geographically neighbouring populations. Overall, levels of genetic variation varied strongly across all four species, with much higher diversity detected within the three lowland ones. The highland species was characterised by numerous private alleles that were geographically restricted at populations from single mountains, some of which showed evidence of recent population bottlenecks. We conclude that Z. poliogaster populations are both of high conservation value and conservation concern, given the high proportion of endemic alleles and the genetic signatures of high genetic drift and low gene flow that are typical for small and isolated populations.  相似文献   

13.
Chen S  Xia T  Chen S  Zhou Y 《Biochemical genetics》2005,43(3-4):189-201
Random amplified polymorphic DNA (RAPD) markers were used to measure genetic diversity of Coelonema draboides (Brassicaceae), a genus endemic to the Qilian Mountains of the Qinghai-Tibet Plateau. We sampled 90 individuals in 30 populations of Coelonema draboides from Datong and Huzhu counties of Qinghai Province in P.R. China. A total of 186 amplified bands were scored from the 14 RAPD primers, with a mean of 13.3 amplified bands per primer, and 87% (161 bands) polymorphic bands (PPB) was found. Analysis of molecular variance (AMOVA) shows that a large proportion of genetic variation (84.2%) resides among individuals within populations, while only 15.8% resides among populations. The species shows higher genetic diversity between individuals than other endemic and endangered plants. The RAPDs provide a useful tool for assessing genetic diversity of rare, endemic species and for resolving relationships among populations. The results show that the genetic diversity of this species is high, possibly allowing it to adapt more easily to environmental variations. The main factor responsible for the high level of differentiation within populations and the low level of diversity among populations is probably the outcrossing and long-lived nature of this species. Some long-distance dispersal, even among far separated populations, is also a crucial determinant for the pattern of genetic variation in the species. This distributive pattern of genetic variation of C. draboides populations provides important baseline data for conservation and collection strategies for the species. It is suggested that only populations in different habitats should be studied and protected, not all populations, so as to retain as much genetic diversity as possible.  相似文献   

14.
Vallisneria natans and Vallisneria spinulosa are two morphologically very similar and sympatrically dominant submerged macrophytes in lakes of the middle-lower reaches of the Yangtze River. Genetic variation was compared based on a total of 196 individuals from six V. natans populations and 201 individuals from seven V. spinulosa populations. Using eight ISSR primers, a total of 139 and 129 DNA fragments were generated with 121 being polymorphic in V. natans and 99 in V. spinulosa. The two species maintained higher genetic variation both at the species and population levels in comparison with other aquatic macrophytes. A higher level of genetic diversity among populations was found in V. natans than in V. spinulosa: the percentage of polymorphic loci (PPL) in V. natans was 52-62% vs. 38-47% in V. spinulosa; gene diversity (H) was 0.21 in V. natans vs. 0.17 in V. spinulosa.Both an analysis of molecular variance (AMOVA) and F-estimation (FST) showed that most of the total genetic variation resided within populations of both species (AMOVA: 85% and 80%; FST: 0.132 and 0.202), indicating low genetic differentiation between populations. Principal coordinates analysis (PCA) indicated evident gene flow between populations of both species. The outcrossing reproductive mode and pervasive gene flow might have played important roles in maintaining high genetic diversity and in shaping low population differentiation of the two Vallisneria species, while the extent of clonal growth might account for the different levels of population divergence between them.  相似文献   

15.
Danxia landform, a unique type of petrographic geomorphology, sporadically occurs in southern China. There are about 400 rare or threatened plants and animals in this landform, but little information on genetic aspects of these species has been available. Of them, Firmiana danxiaensis is a dominant tree species endemic to Mount Danxia, a typical Danxia landform in northern Guangdong, China. In this study, we examined genetic diversity and population structure of F. danxiaensis, in comparison with two other narrowly distributed Firmiana species, Firmiana hainanensis and Firmiana kwangsiensis, which grow in non-Danxia-landform regions. Nine microsatellite markers were used to investigate genetic diversity and differentiation in a total of 256 individuals from nine populations of F. danxiaensis, three of F. hainanensis, and one of F. kwangsiensis. The results showed that F. danxiaensis had the lowest genetic diversity (HE = 0.364 ± 0.019) among the three species, but weak population structure similar to another Firmiana species (FST = 0.042 and 0.020, respectively). This low genetic diversity observed in F. danxiaensis is possibly due to confined natural distribution range and strong selective pressure in soils of Danxia landform, which may also be true for other endemic species in Danxia landform. For the long term survival of these endemic species, habitat conservation and anthropogenic introduction to similar habitats such as the adjacent Danxia landform areas should be two major strategies.  相似文献   

16.
Loropetalum subcordatum (Hamamelidaceae) is one of the most endangered angiosperm species in China. It is narrowly distributed in a few localities in the evergreen broadleaved forest of southern China. Up to now only a few dozen remnant individuals have been found in the four extant populations. In this project, we studied its genetic diversity and population genetic structure using the high resolution molecular marker of amplified fragment length polymorphism. In total, 47 individuals from all the four populations (including all individuals in three populations) were analyzed. Comparably low genetic diversity within populations was revealed and significantly high genetic differentiation among the populations was detected. Four independent groups were identified which corresponded with their geographical ranges. Autogamy is considered to be the major factor contributing to the low genetic variation and high genetic divergence within this species. In addition, small population size, restricted distribution range, geographical isolation and limited seed dispersal may also contribute to the low genetic diversity and high population genetic differentiation. Clonal reproduction was inferred to occur in the two island populations. Suggestions for conservation strategies are provided to preserve the genetic resources of this species.  相似文献   

17.
The genetic diversity and structure of 12 populations of Megaleranthis saniculifolia, a rare endemic Korean plant, were analyzed using 14 allozyme loci coding 10 enzymes and 78 ISSR loci using seven primers. The genetic diversity of M. saniculifolia at the species level was similar to that observed in out-crossing and long-lived perennials, while at the population level, it was significantly low. The high F IS value of many populations as well as homozygote excess occurred relatively evenly in many populations in relation to the Hardy-Weinberg expectation, suggesting that inbreeding was occurring within the M. saniculifolia populations. The degree of genetic differentiation based on the two markers was high, and there was no correlation between geographic and genetic distance. Bayesian cluster analysis did not reveal any remarkable geographic trends. Positive correlations were observed between genetic diversity (H e and h) and population size. Therefore, low genetic diversity within the population and high population differentiation of M. saniculifolia were closely related to the influence of genetic drift, particularly in highly isolated populations. In addition, the fixation of the main alleles at several loci in the opposite direction provided good evidence for genetic drift. The genetic diversity of M. saniculifolia could be compromised if the distribution area or the size of the population were further reduced. In particular, the isolated populations that are fragmented within an area could be at high risk of extinction due to accelerated inbreeding or genetic drift. Considering this, a close monitoring of the population size and of the changes in the genetic structure must be performed. Some practical measures for genetic conservation are also proposed.  相似文献   

18.
Nothotsuga longibracteata, a relic and endangered conifer species endemic to subtropical China, was studied for examining the spatial-temporal population genetic variation and structure to understand the historical biogeographical processes underlying the present geographical distribution. Ten populations were sampled over the entire natural range of the species for spatial analysis, while three key populations with large population sizes and varied age structure were selected for temporal analyses using both nuclear microsatellites (nSSR) and chloroplast microsatellites (cpSSR). A recent bottleneck was detected in the natural populations of N. longibracteata. The spatial genetic analysis showed significant population genetic differentiation across its total geographical range. Notwithstanding, the temporal genetic analysis revealed that the level of genetic diversity between different age class subpopulations remained constant over time. Eleven refugia of the Last Glacial Maximum were identified, which deserve particular attention for conservation management.  相似文献   

19.
Understanding the evolutionary processes in species at the margins of their range is of great significance, because marginal populations may harbor local adaptations and will initiate further expansion in response to changes in the environment. Here we examined genetic variation in two nuclear genes and one chloroplast intergenic spacer in 13 northern marginal populations and one geographically central population of Bombax ceiba, a tree distributed mainly in tropical regions. Our results revealed an extremely low level of genetic diversity in each population at the northern margin of its range and strong genetic differentiation between southern China and South Asia. Cultivated and natural populations showed no significant differences in genetic variability. Genetic admixture in a nuclear gene was detected in 10 of the 13 populations at the northern margin of their range. The founder effect, in which a small number of individuals colonize the northern margins of its range, may explain the extremely low genetic diversity. During the establishment of new populations, different source populations may mix and undergo further genetic drift and differentiation. This study indicates that patterns of genetic diversity in tropical species at the margin of their range may also be severely influenced by founder effects.  相似文献   

20.
In this work, we analyzed inter-simple sequence repeat markers from 10 populations (298 individuals) spanning the whole distribution range of the endemic Narcissus tortifolius. We assessed genetic variation levels and distribution by estimates of genetic diversity, analysis of molecular variance (AMOVA), principal coordinates and Bayesian methods. N. tortifolius showed moderate genetic diversity at intrapopulation level and low genetic differentiation of populations. In general, Almerian populations showed slightly higher levels of genetic diversity than Murcian populations. Our results indicate that habitat fragmentation has not caused genetic depauperation in N. tortifolius but did reveal moderate genetic differentiation. Indeed, principal coordinate analysis and Mantel test revealed a slight tendency to separate populations into two groups (Murcian vs. Almerian). A recent isolation event of populations, together with the perennial nature of this species could be the main reasons for this low to moderate differentiation. Our findings could be used to establish management guidelines for the conservation of this rare species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号