首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here the effects of oral micronized estradiol and soy phytoestrogens on uterine weight, choline acetyltransferase (ChAT) and nerve growth factor (NGF) mRNAs in the frontal cortex and hippocampus of ovariectomized young and retired breeder rats. Within each age category, 15 bilaterally ovariectomized rats were randomized equally into three groups: control (OVX), estradiol (E2), and soy phytoestrogens (SBE). The OVX rats were fed a casein/lactalbumin-based control diet; the E2 rats were fed with the control diet with added estradiol; and the SBE rats were fed with the control diet with added soy phytoestrogens. After 8 weeks of treatment, blood, uteri, frontal cortex, and hippocampus were collected at necropsy. Results showed that the uterine weights and serum estradiol concentrations were significantly higher in the E2 group compared with those in the OVX and SBE groups. In the hippocampus of young rats, E2 treatment resulted in significantly higher NGF mRNA levels than no treatment (OVX), and NGF mRNA levels in the SBE group were intermediate between the E2 and OVX groups. ChAT mRNA levels were significantly higher in the frontal cortex of E2 and SBE-treated retired breeder rats compared to OVX retired breeder rats. There were no differences among treatment groups for ChAT mRNA levels in the frontal cortex of young rats and in the hippocampus of both young and retired breeder rats. Our data suggest that soy phytoestrogens may function as estrogen agonists in regulating ChAT and NGF mRNAs in the brain of female rats.  相似文献   

2.
Previous experiments have demonstrated that in the septo-hippocampal system choline acetyltransferase (ChAT) is induced by nerve growth factor (NGF) (Gnahn et al. (1983) Dev. Brain Res. 9, 45-52) and that hippocampal NGF and mRNANGF levels are correlated with the density of cholinergic innervation (Korsching et al. (1985) EMBO J. 4, 1389-1393). In the present investigation we have compared the developmental changes of ChAT, NGF, and mRNANGF levels in this system. During the postnatal development of the hippocampus the time courses of NGF and ChAT were well correlated including the most rapid increase between P12 and P14. This increase in hippocampal NGF was preceded by a corresponding increase in mRNANGF. The developmental changes in hippocampal NGF levels were also closely reflected by corresponding changes in the septum. This, together with previous observations (Korsching et al., 1985) that the adult septum, in spite of relatively high NGF levels, does not contain measurable quantities of mRNANGF, suggests that the NGF levels in the septum are determined by the quantity of NGF transported retrogradely from the field of innervation rather than by local synthesis. During the prenatal period hippocampal NGF levels were relatively high, whereas the mRNANGF was below the level of detection. Since the ingrowth of septal fibers, and with that also the removal of NGF by retrograde transport, begins around birth, the relatively high prenatal NGF levels probably result from an accumulation produced by a small copy number of mRNANGF prior to the removal of NGF by retrograde axonal transport. It is concluded that the correlation of the developmental changes in NGF and mRNANGF with the ChAT activity in the hippocampus further supports the concept of a physiological role of NGF in the central nervous system.  相似文献   

3.
The activity of carnitine acetyltransferase (acetyl-CoA:L-carnitine O-acetyltransferase) was found to be at least 50-fold higher than that of choline acetyltransferase in PC12 cells. Nerve growth factor stimulated both enzymes in a parallel manner with respect to concentration of NGF and culture time. The stimulation of both enzymes was completely inhibited by 10 M 6-thioguanine, an inhibitor of protein kinase N. Results are discussed with reference to the hypothesis that the two enzymes may be functionally related in neuronal cells.  相似文献   

4.
 We examined the cerebral cortex of five autopsied individuals without neurological and psychiatric diseases by immunohistochemistry using an anti-human recombinant choline acetyltransferase (ChAT) polyclonal antibody and in situ hybridization with 35S-labeled human ChAT riboprobes. The immunohistochemistry detected positive neurons which were medium-sized or large pyramidal neurons located predominantly in layers III and V. The density of such neurons was higher in the motor and secondary sensory areas than in other cortical areas; the immunoreactive neurons in layer V were more densely distributed in the motor area and those in layer III were distributed in the secondary sensory areas. Positively stained, non-pyramidal neurons were observed in the superficial layer of the cingulate gyrus and parahippocampus. No immunoreactive neurons were found in the primary sensory areas. The in situ hybridization detected some neurons with signals for ChAT mRNA in the cerebral cortex, most of which were distributed in layer V of the motor area and in layer III of the secondary visual area. These results indicate that the human cerebral cortex contains cholinergic neurons and displays regional and laminal variations in their distribution. Accepted: 17 November 1998  相似文献   

5.
The purpose of this study was to determine whether the quantity and quality of dietary protein affected the polysome profile of the brain in aged rats. Two experiments were done on three groups of aged rats (30 wk) given the diets containing 20% casein, 5% casein, or 0% casein (experiment 1), and 20% casein, 20% gluten, or 20% gelatin (experiment 2) for 10 d. The aggregation in brain ribosomes declined with a decrease of quantity and quality of dietary protein except in the hippocampus. The RNA concentration (mg RNA/g protein) did not differ among the three groups varying the dietary protein in any brain regions. The results suggest that the higher quantity and quality of dietary protein improves the polysome profile in the brain of aged rats, and that the polysome profile is at least partly related to the mechanism by which the dietary protein affects brain protein synthesis in aged rats.  相似文献   

6.
Semax is a synthetic peptide, which consists of the N-terminal adrenocorticotropic hormone fragment (4-7) (ACTH4-7) and C-terminal Pro-Gly-Pro peptide. Semax promotes neuron survival in hypoxia, increases selective attention and memory storage. It was shown that this synthetic peptide exerted a number of gene expressions, especially brain derived neurotrophic factor gene (Bdnf) and nerve growth factor gene (Ngf). Temporary dynamics of Bdnf and Ngf ex- pression in rat hippocampus and frontal cortex under Semax action (50 mg/kg, single intranasal administration) was studied in this work. It was shown that the studied gene expression levels changed significantly both in the hippocampus and the frontal cortex tissues 20 minutes after the peptide preparation application. The expression levels decreased in the hippocampus and increased in the frontal cortex. Forty minutes after Semax administration both gene expression levels returned to the level typical of control tissues. After that they increased significantly by 90 minutes after experiment start. Bdnf and Ngf expression levels decreased up to the control levels by 8 hours after medicine applying maximum gene expression levels were attained. Thus, Semax administration results in rapid, long-term, and specific activation of Bdnf and Ngf expression changes in different rat brain departments.  相似文献   

7.
Tumour necrosis factor alpha (TNF-alpha) is a pleiotrophic cytokine synthesized primarily by macrophages and monocytes, which exerts a variety of biological activities during inflammatory responses, immune reactions, and wound healing. Within the central nervous system (CNS), the basal levels of TNF-alpha are almost undetectable, but increase after neurological insults. Using transgenic mice expressing high levels of TNF-alpha in the CNS, we investigated the effect of this cytokine on the levels of brain nerve growth factor (NGF), a neurotrophin playing a crucial role in the development, maintenance and regeneration of basal forebrain cholinergic neurons. The immunoenzymatic assay and in situ hybridization revealed that the constitutive expression of NGF decreased in the hippocampus, increased in the hypothalamus, while remained unchanged in the cortex. Moreover, septal cholinergic neurons which receive trophic support from NGF produced in the hippocampus display loss of choline acetyltransferase immunoreactivity, suggesting that the reduced availability of NGF may influence negatively the synthesis of brain cholinergic neurons. These observations indicate that the basal level of brain NGF can be influenced negatively or positively by local expression of TNF-alpha and that this cytokine, through dose-dependent regulation of NGF synthesis and release, may be involved in neurodegenerative events associated with aging.  相似文献   

8.
9.
10.
The effect, quality, and quantity of dietary fat on colon tumor induction by DMH were studied in rats exposed to a given regimen for two generations prior to treatment with DMH. Animals fed a 20% corn oil or 20% lard and treated with DMH had a higher incidence of colonic tumors than did rats fed a 5% corn oil, 5% lard or Purina lab chow and treated similarly. The quality of fat had no major difference on the incidence of colonic tumors.  相似文献   

11.
目的观察ABRA(Actin binding Rho activator)在成年大鼠大脑皮质和海马中的表达。方法制备成年大鼠脑的冰冻切片,采用共聚焦免疫荧光技术和免疫荧光强度测量检测ABRA在大鼠大脑皮质和海马区的表达。结果 ABRA在神经元的胞核、胞浆、突起内可见,其中胞核着色最强。在大脑皮质,ABRA阳性的神经元胞体和突起广泛分布于皮质的分子层、外颗粒层、外锥体细胞层、内颗粒层、内锥体细胞层、多形细胞层,其免疫荧光强度分别为129.22±16.94、125.39±29.83、117.67±22.50、105.85±17.65、103.90±18.00、100.23±20.38,ABRA阳性细胞率分别为0.51±0.01、0.69±0.02、0.64±0.03、0.58±0.05、0.65±0.09、0.63±0.01。在海马,ABRA均匀分布于海马各部,阳性神经元集中于锥体细胞层,而其阳性突起弥散分布于海马分子层和多形层。海马锥体细胞层、分子层、多形层免疫荧光强度分别为141.19±35.48、53.19±10.38、43.32±9.59,ABRA阳性细胞率分别为0.62±0.04、0.27±0.07、0.25±0.03。结论 ABRA广泛表达于大鼠大脑皮质和海马各层,提示ABRA可能在大鼠这些部位的神经细胞功能活动方面起重要作用。  相似文献   

12.
13.
14.
针刺对去卵巢大鼠脑内胆碱乙酰转移酶基因表达的影响   总被引:3,自引:0,他引:3  
Tian SJ  Yin L  Sun JP  Tian QH  Zu YQ  Zheng Y  Li Y  Li YR 《生理学报》2004,56(4):498-502
本工作旨在探讨雌激素对脑内乙酰胆碱生成的影响和电针刺激“足三里”穴对去卵巢大鼠脑内乙酰胆碱生成的调整作用。实验选用成年Wistar雌性大鼠,将动物分为正常对照组(INT)、去卵巢组(OVX)和去卵巢针刺组(OVX AC)。用放射免疫分析方法测定血中雌二醇含量,采用RT-PCR方法获得大鼠脑内胆碱乙酰转移酶(ChAT)mRNA的逆转录表达产物——cDNA,用琼脂糖凝胶电泳方法检测,并通过原位杂交方法观察海马ChAT mRNA阳性神经元的表达,然后用计算机图像分析系统进行统计分析。实验结果显示:去卵巢组大鼠体内雌激素水平明显降低,脑内ChAT mRNA的RT-PCR产物和海马ChAT mRNA阳性表达产物的平均面积、平均积分光度值均明显减少,与对照组和针刺组比较有显著性差异;去卵巢针刺“足三里”穴组与去卵巢组相比,大鼠血中雌激素水平明显升高,脑内ChAT mRNA RT-PCR产物明显增多,海马的ChAT mRNA表达阳性神经元增多。以上结果提示:脑内ChAT基因表达与体内雌激素水平有密切关系,去卵巢后针刺“足三里”穴对ChAT的调节作用可能是针刺增强脑内乙酰胆碱含量的机制之一。  相似文献   

15.
Anovel nuclear factor kappaB (NF-kappaB) binding site has been identified within the promoter region of the mouse gene encoding choline acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine and has been implicated in the cognitive deficits associated with aging and Alzheimer's disease. This binding site, which is located within the nerve growth factor (NGF)-responsive enhancer element, was recognized by the NF-kappaB protein p49 but not p65 or p50. p49 from both basal forebrain and PC12 nuclear extracts interacted with this specific sequence in electrophoretic mobility shift assays. Mutation of the NF-kappaB site caused an increase in NGF-induced promoter activation, whereas overexpression of p49 in NGF-differentiated PC12 cells caused a decrease in endogenous ChAT enzyme activity and a decrease in promoter activity that was specifically mediated through this NF-kappaB binding site. Treatment of PC12 cells with NGF resulted in a drastic reduction in nuclear p49 binding to the ChAT NF-kappaB site after 24 h, but nuclear p49 levels were not altered, suggesting that late NGF-mediated events prevent binding of p49 to the ChAT promoter by an unknown mechanism other than nuclear translocation. Decreased ChAT expression and increased NF-kappaB activity in the brain are associated with aging and Alzheimer's disease. These data indicate that p49 is a negative regulator of ChAT expression and suggest a possible mechanism for aging-associated declines in cholinergic function.  相似文献   

16.
Selected cholinergic markers (choline acetyltransferase, acetylcholinesterase, muscarinic acetylcholine receptor, high-affinity choline uptake) were studied in the hindlimb representation areas of the rat somatosensory cortex and within the visual cortex 1 to 63 days after unilateral transection of the sciatic nerve. In the contralateral somatosensory cortex, peripheral deafferentation resulted in a significant reduction of choline acetyltransferase activity (by 15%) 3 days after sciatic nerve injury, and in a significant reduction of high-affinity choline uptake (by 30%) 1 day after nerve transection, in comparison to untreated control rats. Investigations in individual cortical layers revealed that the decrease of both choline acetyltransferase activity and high-affinity choline uptake sites was mainly due to reductions in cortical layer V. Acetylcholinesterase activity and [3H]quinuclidinyl benzilate binding to muscarinic acetylcholine receptors were not affected by unilateral transection of the sciatic nerve. In the ipsilateral somatosensory cortex, as well as in the visual cortex at both cortical hemispheres, no significant changes in the cholinergic parameters studied could be detected. The data indicate that peripheral deafferentation of the somatosensory cortex results in a transient change of presynaptic cholinergic parameters within the affected somatosensory area as early as 1 to 3 days after the lesion; thus, they emphasize the involvement of cholinergic mechanisms in cortical reorganizational events.  相似文献   

17.
18.
Feeding of rice diet reduced the food consumption and growth of rats. Hepatic Cytochrome P-450, NADPH Cytochrome c reductase and the activity of cytochrome P-450 dependent enzymes (Aniline hydroxylase, aminopyrine N-demethylase, p-nitroanisole O-demethylase) were also decreased by feeding rice diet. Supplementation of lysine and threonine to rice diet improved the activity of these enzymes. NADPH regeneration and microsomal phosphatidylcholine were reduced by feeding rice diet. The phenobarbitone induced sleeping time was decreased by supplementing rice diet with lysine and threonine. The effect of protein is probably partly attributed to changes in membrane phosphatidylcholine content and NADPH regeneration rate.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号