首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metadherin (MTDH), the newly discovered gene, is overexpressed in more than 40% of breast cancers. Recent studies have revealed that MTDH favors an oncogenic course and chemoresistance. With a number of breast cancer cell lines and breast tumor samples, we found that the relative expression of MTDH correlated with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitivity in breast cancer. In this study, we found that knockdown of endogenous MTDH cells sensitized the MDA-MB-231 cells to TRAIL-induced apoptosis both in vitro and in vivo. Conversely, stable overexpression of MTDH in MCF-7 cells enhanced cell survival with TRAIL treatment. Mechanically, MTDH down-regulated caspase-8, decreased caspase-8 recruitment into the TRAIL death-inducing signaling complex, decreased caspase-3 and poly(ADP-ribose) polymerase-2 processing, increased Bcl-2 expression, and stimulated TRAIL-induced Akt phosphorylation, without altering death receptor status. In MDA-MB-231 breast cancer cells, sensitization to TRAIL upon MTDH down-regulation was inhibited by the caspase inhibitor Z-VAD-fmk (benzyloxycarbonyl-VAD-fluoromethyl ketone), suggesting that MTDH depletion stimulates activation of caspases. In MCF-7 breast cancer cells, resistance to TRAIL upon MTDH overexpression was abrogated by depletion of Bcl-2, suggesting that MTDH-induced Bcl-2 expression contributes to TRAIL resistance. We further confirmed that MTDH may control Bcl-2 expression partly by suppressing miR-16. Collectively, our results point to a protective function of MTDH against TRAIL-induced death, whereby it inhibits the intrinsic apoptosis pathway through miR-16-mediated Bcl-2 up-regulation and the extrinsic apoptosis pathway through caspase-8 down-regulation.  相似文献   

2.
We established TRAIL-resistant MDA-231/TR cells from MDA-231 parent cells to understand the mechanism of TRAIL resistance in breast cancer cells. The selected TRAIL-resistant cells were cross-resistant to TNF-alpha/cycloheximide but remained sensitive to DNA-damage drugs such as oxaliplatin and etoposide. The expression levels of death receptors (DR4 and DR5), FADD, cIAP1, cIAP2, and Bcl-2 family were not changed in TRAIL-treated both cells. Significant down-regulation of XIAP and cFLIP was occurred after TRAIL treatment in MDA-231 cells whereas their levels were sustained in MDA-231/TR cells. TRAIL-mediated activation of ERK and JNK were also observed in parent MDA-231 cells but not in MDA-231/TR cells. However, TRAIL-resistant cells showed constitutive activation state after treatment with TRAIL. Pretreatment with PD98059 or transfection of MKK1-DN (dominant negative) expression vector attenuated TRAIL resistance in MDA-231/TR cells. Our findings provide the evidence that the sustained expression level of cFLIP(L) and XIAP protein and constitutive ERK activation may lead to acquired TRAIL resistance in breast cancer cells.  相似文献   

3.
TRAIL resistance in many cancer cells is one of the major problems in TRAIL-based cancer therapy. Thus, the agents that can sensitize the tumor cells to TRAIL-mediated apoptosis are strictly needed for the improvement of anti-cancer effect of TRAIL. Acrolein is a byproduct of lipid peroxidation, which has been involved in pulmonary, cardiac and neurodegenerative diseases. We investigated whether acrolein, an α,β-unsaturated aldehyde, can potentiate TRAIL-induced apoptosis in human renal cancer cells. The combined treatment with acrolein and TRAIL significantly induced apoptosis, and stimulated of caspase-3 activity, DNA fragmentation, and cleavage of PARP. We found that acrolein down-regulated the protein level of Bcl-2 and Bcl-2 overexpression inhibited the cell death induced by the combined treatment with acrolein and TRAIL. In addition, acrolein up-regulated C/EBP homologous protein (CHOP) and TRAIL death receptor 5 (DR5) and down-regulation of CHOP or DR5 expression using the respective small interfering RNA significantly attenuated the apoptosis induced by acrolein plus TRAIL. Interestingly, pretreatment with an antioxidant, N-acetylcysteine (NAC), inhibited not only CHOP and DR5 up-regulation but also the cell death induced by acrolein plus TRAIL. Taken together, our results demonstrated that acrolein enhances TRAIL-induced apoptosis in Caki cells through down-regulation of Bcl-2 and ROS dependent up-regulation of DR5.  相似文献   

4.
5.
Heregulin regulation of Akt/protein kinase B in breast cancer cells.   总被引:3,自引:0,他引:3  
In the present studies, we demonstrate that heregulin is a potent and rapid activator of the serine/threonine kinase called Akt in the MCF-7 breast cancer cell line but not in 3 other breast cancer cell lines (T47D, HBL-100, and MDA-231). The extent of activation of Akt in the 4 cell lines correlated with the ability of heregulin to activate phosphatidylinositol 3-kinase and inhibition of the kinase blocked Akt activation. A monoclonal antibody to HER2 inhibited the ability of heregulin to activate Akt in the MCF-7 cells. BT474, a breast cancer cell line which overexpresses HER2, had high basal Akt enzymatic activity. This high basal activity was lowered when cells were pre-incubated with an anti-HER2 monoclonal antibody which is used to treat breast cancer patients. Our results indicate that heregulin is a potent activator of Akt and that overexpression of HER2 in breast cancers could also lead to activation of Akt.  相似文献   

6.
Whether celastrol, a triterpene from traditional Chinese medicine, can modulate the anticancer effects of TRAIL, the cytokine that is currently in clinical trial, was investigated. As indicated by assays that measure plasma membrane integrity, phosphatidylserine exposure, mitochondrial activity, and activation of caspase-8, caspase-9, and caspase-3, celastrol potentiated the TRAIL-induced apoptosis in human breast cancer cells, and converted TRAIL-resistant cells to TRAIL-sensitive cells. When examined for its mechanism, we found that the triterpene down-regulated the expression of cell survival proteins including cFLIP, IAP-1, Bcl-2, Bcl-xL, survivin, and XIAP and up-regulated Bax expression. In addition, we found that celastrol induced the cell surface expression of both the TRAIL receptors DR4 and DR5. This increase in receptors was noted in a wide variety of cancer cells including breast, lung, colorectal, prostate, esophageal, and pancreatic cancer cells, and myeloid and leukemia cells. Gene silencing of the death receptor abolished the effect of celastrol on TRAIL-induced apoptosis. Induction of the death receptor by the triterpenoid was found to be p53-independent but required the induction of CAAT/enhancer-binding protein homologous protein (CHOP), inasmuch as gene silencing of CHOP abolished the induction of DR5 expression by celastrol and associated enhancement of TRAIL-induced apoptosis. We found that celastrol also induced reactive oxygen species (ROS) generation, and ROS sequestration inhibited celastrol-induced expression of CHOP and DR5, and consequent sensitization to TRAIL. Overall, our results demonstrate that celastrol can potentiate the apoptotic effects of TRAIL through down-regulation of cell survival proteins and up-regulation of death receptors via the ROS-mediated up-regulation of CHOP pathway.  相似文献   

7.
Cardamonin (CD), a naturally occurring chalcone isolated from large black cardamom, was previously reported to suppress the proliferation of breast cancer cells. However, its precise molecular anti‐tumor mechanisms have not been well elucidated. In this study, we found that CD markedly inhibited the proliferation of MDA‐MB 231 and MCF‐7 breast cancer cells through the induction of G2/M arrest and apoptosis. Reactive oxygen species (ROS) plays a pivotal role in the inhibition of CD‐induced cell proliferation. Treatment with N‐acetyl‐cysteine (NAC), an ROS scavenger, blocked CD‐induced G2/M arrest and apoptosis in this study. Quenching of ROS by overexpression of catalase also blocked CD‐induced cell cycle arrest and apoptosis. We showed that CD enhanced the expression and nuclear translocation of Forkhead box O3 (FOXO3a) via upstream c‐Jun N‐terminal kinase, inducing the expression of FOXO3a and its target genes, including p21, p27, and Bim. This process led to the reduction of cyclin D1 and enhancement of activated caspase‐3 expression. The addition of NAC markedly reversed these effects, knockdown of FOXO3a using small interfering RNA also decreased CD‐induced G2/M arrest and apoptosis. In vivo, CD efficiently suppressed the growth of MDA‐MB 231 breast cancer xenograft tumors. Taken together, our data provide a molecular mechanistic rationale for CD‐induced cell cycle arrest and apoptosis in breast cancer cells.  相似文献   

8.
Molecular iodine (I2) is known to inhibit the induction and promotion of N-methyl-n-nitrosourea-induced mammary carcinogenesis, to regress 7,12-dimethylbenz(a)anthracene-induced breast tumors in rat, and has also been shown to have beneficial effects in fibrocystic human breast disease. Cytotoxicity of iodine on cultured human breast cancer cell lines, namely MCF-7, MDA-MB-231, MDA-MB-453, ZR-75-1, and T-47D, is reported in this communication. Iodine induced apoptosis in all of the cell lines tested, except MDA-MB-231, shown by sub-G1 peak analysis using flow cytometry. Iodine inhibited proliferation of normal human peripheral blood mononuclear cells; however, it did not induce apoptosis in these cells. The iodine-induced apoptotic mechanism was studied in MCF-7 cells. DNA fragmentation analysis confirmed internucleosomal DNA degradation. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling established that iodine induced apoptosis in a time- and dose-dependent manner in MCF-7 cells. Iodine-induced apoptosis was independent of caspases. Iodine dissipated mitochondrial membrane potential, exhibited antioxidant activity, and caused depletion in total cellular thiol content. Western blot results showed a decrease in Bcl-2 and up-regulation of Bax. Immunofluorescence studies confirmed the activation and mitochondrial membrane localization of Bax. Ectopic Bcl-2 overexpression did not rescue iodine-induced cell death. Iodine treatment induces the translocation of apoptosis-inducing factor from mitochondria to the nucleus, and treatment of N-acetyl-L-cysteine prior to iodine exposure restored basal thiol content, ROS levels, and completely inhibited nuclear translocation of apoptosis-inducing factor and subsequently cell death, indicating that thiol depletion may play an important role in iodine-induced cell death. These results demonstrate that iodine treatment activates a caspase-independent and mitochondria-mediated apoptotic pathway.  相似文献   

9.
We find that the prostate cancer cell lines ALVA-31, PC-3, and DU 145 are highly sensitive to apoptosis induced by TRAIL (tumor-necrosis factor-related apoptosis-inducing ligand), while the cell lines TSU-Pr1 and JCA-1 are moderately sensitive, and the LNCaP cell line is resistant. LNCaP cells lack active lipid phosphatase PTEN, a negative regulator of the phosphatidylinositol (PI) 3-kinase/Akt pathway, and demonstrate a high constitutive Akt activity. Inhibition of PI 3-kinase using wortmannin and LY-294002 suppressed constitutive Akt activity and sensitized LNCaP cells to TRAIL. Treatment of LNCaP cells with TRAIL alone induced cleavage of the caspase 8 and XIAP proteins. However, processing of BID, mitochondrial release of cytochrome c, activation of caspases 7 and 9, and apoptosis did not occur unless TRAIL was combined with either wortmannin, LY-294002, or cycloheximide. Blocking cytochrome c release by Bcl-2 overexpression rendered LNCaP cells resistant to TRAIL plus wortmannin treatment but did not affect caspase 8 or BID processing. This indicates that in these cells mitochondria are required for the propagation rather than the initiation of the apoptotic cascade. Infection of LNCaP cells with an adenovirus expressing a constitutively active Akt reversed the ability of wortmannin to potentiate TRAIL-induced BID cleavage. Thus, the PI 3-kinase-dependent blockage of TRAIL-induced apoptosis in LNCaP cells appears to be mediated by Akt through the inhibition of BID cleavage.  相似文献   

10.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane cytokine and a potent inducer of apoptosis. Epidermal growth factor (EGF) signaling is well known to involve in tumor survival and overexpression of EGF receptor (EGF-R) attributes to decreased responsiveness to many available therapies in cancer treatment. We investigated whether EGF-R inhibitors enhance TRAIL-induced apoptosis. We exposed A549 cells to Genistein, PD153035, and PD158780 for 12h and then treated with recombinant TRAIL protein. TRAIL alone induced 25% cell death after a 3-h treatment, but in cells pretreated with EGF-R inhibitors, TRAIL induced cell death to more than 70% after 3h treatment. Genistein enhanced TRAIL-induced apoptosis in a time- and dose-dependent manner. Western blot analyses showed that pretreatment with Genistein down-regulated the protein levels of total Akt and phosphorylated active Akt. Genistein also decreased the protein level of Bcl-XL that is regulated by Akt. These molecules are well characterized to act against induction of apoptotic cell death. Therefore, our data suggest that EGF-R inhibitor may sensitize A549 cells to TRAIL-induced apoptosis by regulating expression of these proteins. EGF-R inhibitors may play an important role in the anti-cancer activity of TRAIL protein, especially in TRAIL-resistant tumors that arise by expressing constitutively active Akt.  相似文献   

11.
Death receptor 5 (DR5/TRAIL-R2) is an apoptosis-inducing membrane receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). In this study, we show that rosiglitazone sensitizes human renal cancer cells to TRAIL-mediated apoptosis, but not normal human mesangial cells. Furthermore, because rosiglitazone-enhanced TRAIL-mediated apoptosis is induced in various types of cancer cells but is not interrupted by Bcl-2 overexpression, this combinatory treatment may provide an attractive strategy for cancer treatment. We found that treatment with rosiglitazone significantly induces DR5 expression at both its mRNA and its protein levels, accompanying the generation of reactive oxygen species (ROS). Both treatment with DR5/Fc chimeric protein and silencing of DR5 expression using small interfering RNAs attenuated rosiglitazone plus TRAIL-induced apoptosis, showing the critical role of DR5 in this cell death. Pretreatment with GSH significantly inhibited rosiglitazone-induced DR5 up-regulation and the cell death induced by the combined treatment with rosiglitazone and TRAIL, suggesting that ROS mediate rosiglitazone-induced DR5 up-regulation, contributing to TRAIL-mediated apoptosis. However, both DR5 up-regulation and sensitization of TRAIL-mediated apoptosis induced by rosiglitazone are likely PPARgamma-independent, because a dominant-negative mutant of PPARgamma and a potent PPARgamma inhibitor, GW9662, failed to block DR5 induction and apoptosis. Interestingly, we also found that rosiglitazone treatment induced down-regulation of cellular FLICE-inhibitory protein (c-FLIPs), and ectopic expression of c-FLIPs attenuated rosiglitazone plus TRAIL-mediated apoptosis, demonstrating the involvement of c-FLIPs in this apoptosis. Taken together, the results of this study demonstrate that rosiglitazone enhances TRAIL-induced apoptosis in various cancer cells by ROS-mediated DR5 up-regulation and down-regulation of c-FLIPs.  相似文献   

12.
ω‐Hydroxyundec‐9‐enoic acid (ω‐HUA), a plant secondary metabolite, exhibits anti‐fungal activity. However, its effect on breast cancer cells is unknown. Here, we investigated the anti‐ breast cancer activity of ω‐HUA and its underlying mechanism. Treatment of human breast cancer cell lines, MDA‐MB‐231 and MDA‐MB‐435, with ω‐HUA induced apoptotic cell death with increased cleaved caspase‐3 and poly (ADP‐ribose) polymerase (PARP) levels, and p38 and JNK phosphorylation. Inhibition of these mitogen‐activated protein kinase (MAPK) pathways using specific inhibitors or siRNA, for p38 and JNK, respectively, blocked the ω‐HUA‐induced apoptosis in a dose‐dependent manner. Moreover, pretreatment of the cells with antioxidant N‐acetyl cysteine (NAC) inhibited ω‐HUA‐induced increased reactive oxygen species (ROS) levels, cleaved caspase‐3 and cleaved PARP, and phosphorylated JNK, phosphorylated p38, and increased cell viability and colony‐forming ability. MDA‐MB‐231 xenograft model showed that the ω‐HUA‐treated group exhibited greater tumor regression and significantly reduced tumor weight compared to that exhibited by the vehicle‐administered group. Collectively, ω‐HUA‐induced intracellular ROS generation induced breast cancer cell apoptosis through JNK and p38 signaling pathway activation, resulting in tumor regression. The results suggested that ω‐HUA is an effective supplement for inhibiting human breast cancer growth.  相似文献   

13.
Benzyl isothiocyanate (BITC), a dietary cancer chemopreventive agent, causes apoptosis in MDA-MB-231 and MCF-7 human breast cancer cells, but the mechanism of cell death is not fully understood. We now demonstrate that the BITC-induced apoptosis in human breast cancer cells is initiated by reactive oxygen species (ROS) due to inhibition of complex III of the mitochondrial respiratory chain. The BITC-induced ROS production and apoptosis were significantly inhibited by overexpression of catalase and Cu,Zn-superoxide dismutase and pharmacological inhibition of the mitochondrial respiratory chain. The mitochondrial DNA-deficient Rho-0 variant of MDA-MB-231 cells was nearly completely resistant to BITC-mediated ROS generation and apoptosis. The Rho-0 MDA-MB-231 cells also resisted BITC-mediated mitochondrial translocation (activation) of Bax. Biochemical assays revealed inhibition of complex III activity in BITC-treated MDA-MB-231 cells as early as at 1 h of treatment. The BITC treatment caused activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), which function upstream of Bax activation in apoptotic response to various stimuli. Pharmacological inhibition of both JNK and p38 MAPK conferred partial yet significant protection against BITC-induced apoptosis. Activation of JNK and p38 MAPK resulting from BITC exposure was abolished by overexpression of catalase. The BITC-mediated conformational change of Bax was markedly suppressed by ectopic expression of catalytically inactive mutant of JNK kinase 2 (JNKK2(AA)). Interestingly, a normal human mammary epithelial cell line was resistant to BITC-mediated ROS generation, JNK/p38 MAPK activation, and apoptosis. In conclusion, the present study indicates that the BITC-induced apoptosis in human breast cancer cells is initiated by mitochondria-derived ROS.  相似文献   

14.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent because of its tumor selectivity. TRAIL is known to induce apoptosis in cancer cells but spare most normal cells. In this study, we examined whether treatment of docetaxel (DTX) can enhance apoptotic cell death by TRAIL against androgen-independent prostate cancer (AIPC). The cell death effect of combinations of TRAIL and docetaxel on prostate cancer cell lines (androgen-dependent LNCaP and its derived androgen-independent, metastatic C4-2B) was evaluated by synergisms of apoptosis. Western blot assay and DNA fragmentation assay were used to study the underlying mechanisms of cell death and search for any mechanisms of enhancement of TRAIL induced apoptosis in the presence of docetaxel. In addition, we investigated the in vitro anti-tumor effects of combined docetaxel and TRAIL using MAP kinase inhibitors. Docetaxel itself could not induce apoptotic cell death in 24 h even in high concentration. Apoptotic cell death, however, was drastically enhanced by pretreatment of docetaxel 20 h before TRAIL treatment. Docetaxel enhanced the PARP-1 cleavage and caspases activation by TRAIL especially in androgen-independent, metastatic C4-2B cell line, mainly by phosphorylation of Bcl-2 by JNK activation. It appears that apoptotic cell death was protected by the JNK inhibitor SP600125. The results of our study show that pretreatment of docetaxel is able to enhance the apoptosis produced by TRAIL in prostate cancer cells, especially in hormone-refractory prostate cancer (HRPC).  相似文献   

15.
Bone and lung metastases are responsible for the majority of deaths in patients with breast cancer. Following treatment of the primary cancer, emotional and psychosocial factors within this population precipitate time to recurrence and death, however the underlying mechanism(s) remain unclear. Using a mouse model of bone metastasis, we provide experimental evidence that activation of the sympathetic nervous system, which is one of many pathophysiological consequences of severe stress and depression, promotes MDA-231 breast cancer cell colonization of bone via a neurohormonal effect on the host bone marrow stroma. We demonstrate that induction of RANKL expression in bone marrow osteoblasts, following β2AR stimulation, increases the migration of metastatic MDA-231 cells in vitro, independently of SDF1-CXCR4 signaling. We also show that the stimulatory effect of endogenous (chronic stress) or pharmacologic sympathetic activation on breast cancer bone metastasis in vivo can be blocked with the β-blocker propranolol, and by knockdown of RANK expression in MDA-231 cells. These findings indicate that RANKL promotes breast cancer cell metastasis to bone via its pro-migratory effect on breast cancer cells, independently of its effect on bone turnover. The emerging clinical implication, supported by recent epidemiological studies, is that βAR-blockers and drugs interfering with RANKL signaling, such as Denosumab, could increase patient survival if used as adjuvant therapy to inhibit both the early colonization of bone by metastatic breast cancer cells and the initiation of the "vicious cycle" of bone destruction induced by these cells.  相似文献   

16.
Immunotherapy based on T cell responses to the tumor is believed to involve killing of cancer cells by induction of apoptosis. The predominant mechanisms are death ligand-induced signaling mainly by TNF-related apoptosis-inducing ligand (TRAIL) mediated by CD4 T cells, monocytes and dendritic cells, and perforin/granzyme mediated apoptosis mediated by CD8 T cells and NK cells. Resistance against TRAIL involves loss of TRAIL death receptors and/or activation of the MEK and/or Akt signal pathways. Resistance to CD8 CTL responses also involves activation of the MEK and/or Akt pathways. Apoptosis induced by immune responses is regulated by the Bcl-2 family of proteins. Many reagents have been developed against the Bcl-2 antiapoptotic proteins and clinical trials combining them with immunotherapy are awaited. The second group of agents that regulate the Bcl-2 family of proteins are the signal pathway inhibitors. Clinical trials with inhibitors of RAS, RAF or MEK are in progress and would appear an exciting combination with immunotherapy. One of the main drivers of resistance to apoptosis are adaptive mechanisms that allow cancer cells to overcome endoplasmic reticulum (ER) stress. These adaptive mechanisms inhibit practically all known apoptotic pathways and create an acidic environment that may reduce infiltration of lymphocytes against the tumor. The signal pathway inhibitors may be effective against these adaptive processes but additional agents that target ER stress pathways are in development. In conclusion, combination of immunotherapy with agents that target antiapoptotic mechanisms in cancer cells offers a new approach that requires evaluation in clinical trials.  相似文献   

17.
Ceramide is a sphingolipid that is abundant in the plasma membrane of neuronal cells and is thought to have regulatory roles in cell differentiation and cell death. Ceramide is known to induce apoptosis in a variety of different cell types, whereas the physiological significance of gangliosides, another class of sphingolipids, in these processes is still unclear. We examined the mechanisms of ceramide-induced cell death using a human neuroblastoma cell line. Treatment of the human neuroblastoma cell line SH-SY5Y with ceramide induced dephosphorylation of the PKB/Akt kinase and subsequent mitochondrial dysfunction. In addition, ceramide-induced neuronal cell death was not completely blocked by inhibition of caspase activity. This incomplete inhibition appeared to be attributable to the translocation of apoptosis-inducing factor to the nucleus. Furthermore, overexpression of active PKB/Akt or Bcl-2 successfully blocked ceramide-induced neuronal cell death through inhibition of the translocation of apoptosis-inducing factor.  相似文献   

18.
Epidermal growth factor (EGF) protects against death receptor induced apoptosis in epithelial cells. Herein, we demonstrate that EGF protection against tumor necrosis factor related apoptosis-inducing ligand (TRAIL) induced apoptosis is mediated by increased expression of the Bcl-2 family member myeloid cell leukemia 1 (Mcl-1). EGF increased the mRNA and protein levels of Mcl-1. Furthermore, expression of ErbB1 alone or in combination with ErbB2 in NIH3T3 cells up-regulates Mcl-1 following EGF treatment. In addition, up-regulation of Mcl-1 by EGF is mediated through AKT and NFkappaB activation since kinase inactive AKT and DeltaIkappaB effectively blocks this up-regulation. NFkappaB was also critical for the ability of EGF to prevent TRAIL induced apoptosis as a dominant negative IkappaB (DeltaIkappaB) blocked NFkappaB activation, and relieved EGF protection against TRAIL mediated mitochondrial cytochrome-c release and apoptosis. Finally, anti-sense oligonucleotides directed against Mcl-1 effectively reduced the protein levels of Mcl-1 and blocked EGF protection against TRAIL induced mitochondrial cytochrome-c release and apoptosis. Taken together, EGF signaling leads to increased Mcl-1 expression that is required for blockage of TRAIL induced apoptosis.  相似文献   

19.
The intestinal mucosa is a rapidly-renewing tissue characterized by cell proliferation, differentiation, and eventual apoptosis with progression up the vertical gut axis. The inhibition of phosphatidylinositol (PI) 3-kinase by specific chemical inhibitors or overexpression of the lipid phosphatase PTEN enhances enterocyte-like differentiation in human colon cancer cell models of intestinal differentiation. In this report, we examined the role of PI 3-kinase inhibition in the regulation of apoptotic gene expression in human colon cancer cell lines HT29, HCT-116, and Caco-2. Inhibition of PI 3-kinase with the chemical inhibitor wortmannin increased TNF-related apoptosis-inducing ligand (TRAIL; Apo2) mRNA and protein expression. Similarly, overexpression of the tumor suppressor protein PTEN, an antagonist of PI 3-kinase signaling, resulted in the increased expression of TRAIL. Activation of PI 3-kinase by pretreatment with IGF-1, a gut trophic factor, markedly attenuated the induction of TRAIL by wortmannin. Moreover, overexpression of active Akt, a downstream target of PI 3-kinase, or inhibition of GSK-3, a downstream target of active Akt, completely blocked the induction of TRAIL by wortmannin. Consistent with findings that TRAIL is induced by agents that enhance intestinal cell differentiation, TRAIL expression was specifically localized to the differentiated cells of the colon and small bowel. Adenovirus-mediated overexpression of TRAIL increased DNA fragmentation of HCT-116 cells, demonstrating the functional activity of TRAIL induction. Taken together, our findings demonstrate induction of the TRAIL by inhibition of PI 3-kinase in colon cancer cell lines. These results identify TRAIL, a novel TNF family member, as a downstream target of the PI 3-kinase/Akt/GSK-3 pathway and may have important implications for better understanding the role of the PI 3-kinase pathway in intestinal cell homeostasis.  相似文献   

20.
In oestrogen receptor (ER)-positive breast carcinoma cells, 17β-oestradiol suppresses a dose-dependent induction of cell death by tumour necrosis factor alpha (TNF). The ability of oestrogens to promote cell survival in ER-positive breast carcinoma cells is linked to a coordinate increase in Bcl-2 expression, an effect that is blocked with the pure anti-oestrogen ICI 182,780. The role of Bcl-2 in MCF-7 cell survival was confirmed by stable overexpression of Bcl-2 which resulted in suppression of apoptosis induced by doxorubicin (DOX), paclitaxel (TAX) and TNF as compared to vector-control cells. The pure anti-oestrogen ICI 182,780 in combination with TNF, DOX or TAX potentiated apoptosis in vector-transfected cells. Interestingly, pre-treatment with ICI 182,780 markedly enhanced chemotherapeutic drug- or TNF-induced apoptosis in Bcl-2 expressing cells, an effect that was correlated with ICI 182,780 induced activation of c-Jun N-terminal kinase. Our results suggest that the effects of oestrogens/anti-oestrogens on the regulation of apoptosis may involve coordinate activation of signalling events and Bcl-2 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号