共查询到20条相似文献,搜索用时 0 毫秒
1.
Uddin S Lekmine F Sharma N Majchrzak B Mayer I Young PR Bokoch GM Fish EN Platanias LC 《The Journal of biological chemistry》2000,275(36):27634-27640
2.
Dysregulated signaling contributes to altered cellular growth, motility, and survival during cancer progression. We have evaluated the ability of several factors to stimulate migration in WM1341D, a cell line derived from an invasive human vertical growth phase melanoma. Basic fibroblast growth factor, hepatocyte growth factor, interleukin-8, and CCL27 each slightly increased migration. Insulin-like growth factor I (IGF-I), however, stimulated a 15-fold increase in migration. This response required the IGF-I receptor, which activates phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. Both pathways have been implicated in migration in a variety of cell types, but the signaling required for IGF-I-induced melanoma cell migration is not well defined. IGF-I-stimulated activation of MAPK/ERK signaling in WM1341D cells was inhibited by U0126, but a 33-fold higher dose of U0126 was needed to inhibit IGF-I-stimulated cellular migration. In contrast, similar concentrations of either wortmannin or LY294002 were required to inhibit both IGF-I-induced PI3K activation and migration. These results indicate that IGF-I-stimulated migration of WM1341D cells requires PI3K activation but is independent of MAPK/ERK signaling. Determining the contributions of IGF-I signaling pathways to migration will help us to understand melanoma progression and may lead to new therapeutic targets of this highly metastatic cancer. 相似文献
3.
4.
While evidence is accumulating that phosphoinositide signaling plays a crucial role in growth factor and hormone receptor down-regulation, this signaling pathway has also been proposed to regulate endosomal membrane transport and multivesicular endosome biogenesis. Here, we have followed the fate of the down-regulated EGF receptor (EGFR) and bulk transport (fluid phase) markers in the endosomal pathway in vivo and in vitro. We find that bulk transport from early to late endosomes is not affected after inhibition of the phosphatidylinositol-3-phosphate (PI3P) signaling pathway, but that the EGFR then remains trapped in early endosomes. Similarly, we find that hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is not directly involved in bulk solute transport, but is required for EGFR sorting. These observations thus show that transport and sorting can be uncoupled in the endosomal pathway. They also show that PI3P signaling does not regulate the core machinery of endosome biogenesis and transport, but controls the sorting of down-regulated receptor molecules in early endosomes via Hrs. 相似文献
5.
Regulation of Stat3 activation by MEK kinase 1 总被引:6,自引:0,他引:6
6.
The non-RTK (receptor tyrosine kinase) ACK1 [activated Cdc42 (cell division cycle 42)-associated kinase 1] binds a number of RTKs and is associated with their endocytosis and turnover. Its mode of activation is not well established, but models have suggested that this is an autoinhibited kinase. Point mutations in its SH3 (Src homology 3)- or EGF (epidermal growth factor)-binding domains have been reported to activate ACK1, but we find neither of the corresponding W424K or F820A mutations do so. Indeed, deletion of the various ACK1 domains C-terminal to the catalytic domain are not associated with increased activity. A previous report identified only one major tyrosine phosphorylated protein of 60 kDa co-purified with ACK1. In a screen for new SH3 partners for ACK1 we found multiple Src family kinases; of these c-Src itself binds best. The SH2 and SH3 domains of Src interact with ACK1 Tyr518 and residues 623-652 respectively. Src targets the ACK1 activation loop Tyr284, a poor autophosphorylation site. We propose that ACK1 fails to undergo significant autophosphorylation on Tyr284 in vivo because it is basophilic (whereas Src is acidophilic). Subsequent ACK1 activation downstream of receptors such as EGFR (EGF receptor) (and Src) promotes turnover of ACK1 in vivo, which is blocked by Src inhibitors, and is compromised in the Src-deficient SYF cell line. The results of the present study can explain why ACK1 is responsive to so many external stimuli including RTKs and integrin ligation, since Src kinases are commonly recruited by multiple receptor systems. 相似文献
7.
MAP kinase activation by mu opioid receptor involves phosphatidylinositol 3-kinase but not the cAMP/PKA pathway. 总被引:2,自引:0,他引:2
The involvement of protein kinases was studied in mu opioid receptor activation of mitogen-activated protein (MAP) kinase using cells transfected with the receptor clone. The cAMP/protein kinase A (PKA) pathway is known to be the major biochemical pathway for mu opioid receptor signaling. However, our data showed that stimulating adenylyl cyclase or activating PKA had no effect on mu receptor enhancement of MAP kinase activity, suggesting that the cAMP/PKA pathway is not involved in mediating the mu receptor activation of MAP kinase. Inhibition of phosphatidylinositol (PI) 3-kinase reduced mu receptor enhancement of MAP kinase activity, suggesting PI 3-kinase involvement. Together, these results show that cross-talk between the mu opioid receptor and the MAP kinase cascade is not mediated by the cAMP/PKA pathway, but involves PI 3-kinase. 相似文献
8.
Dhar-Mascareno M Pedraza A Golde DW 《Biochemical and biophysical research communications》2005,337(2):551-556
GM-CSF has been identified as a growth factor for endothelial cells. In this study, we investigated the role of PI3-kinase pathway in mediating GM-CSF induced angiogenesis. GM-CSF induced tube formation in human umbilical vein endothelial cells, as examined using Matrigel assay, was inhibited by specific inhibitors of PI3-kinase, wortmannin, and LY294002. The regulatory subunit of PI3-kinase (p85) interacted with alphaGMR via its C-SH2 domain in a GM-CSF-dependent fashion with concomitant phosphorylation of p85 and activation of PI3-kinase pathway. p85 binding site on the alphaGMR was essential to induce GM-CSF receptor-dependent Stat activation. Furthermore, inhibition of PI3-kinase activity also abrogated GM-CSF induced Stat activation. These studies underscore the significance of the GM-CSF mediated PI3-kinase activation and its role in angiogenesis. 相似文献
9.
10.
Qin Q Downey JM Cohen MV 《American journal of physiology. Heart and circulatory physiology》2003,285(2):H727-H734
Acrolein is a highly reactive aldehyde pollutant and an endogenous product of lipid peroxidation. Increased generation of, or exposures to, acrolein incites pulmonary and vascular injury. The effects of acrolein on the vasomotor responses of rat aortic rings were studied to understand its mechanism of action. Incubation with acrolein (10-100 microM) alone did not affect the resting tone of aortic vessels; however, a dose-dependent relaxation of phenylephrine-precontracted aortic rings was observed. Acrolein-induced relaxation was slow and time dependent and the extent of relaxation after 100 min of application was 44.7 +/- 4.1% (10 microM), 56.0 +/- 5.6% (20 microM), 61.0 +/- 7.9% (40 microM), and 96.1 +/- 2.1 (80 microM), respectively, versus 14.2 +/- 3.3% relaxation in the absence of acrolein. Acrolein-induced vasorelaxation was prevented by endothelial denudation and was abolished on pretreatment with the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester, the guanylyl cyclase inhibitor 1H-[1,2,4]oxidazolo[4,3-a]quinoxaline-1-one, or the cyclooxygenase inhibitor indomethacin. Inhibition of K+ channels (by tetrabutylammonium) or Na+-K+-ATPase (by ouabain) did not significantly prevent acrolein-mediated vasorelaxation. Exposure to acrolein in the presence or absence of other compounds elicited slow wave vasomotor effect in 77% of aortic vessels versus 1.4% in control. Vasomotor responses were also studied on aortic rings prepared from rats fed 2 mg. kg-1. day-1 acrolein for 3 alternate days by oral gavage. These vessels developed a significantly lower contractile response to phenylephrine compared with controls. Together, these results indicate that acute acrolein exposure evokes delayed vasorelaxation due to a nitric oxide- and prostacyclin-dependent mechanism, whereas in vivo acrolein exposure compromises vessel contractility. 相似文献
11.
12.
Priel-Halachmi S Ben-Dor I Shpungin S Tennenbaum T Molavani H Bachrach M Salzberg S Nir U 《The Journal of biological chemistry》2000,275(37):28902-28910
p94(fer) and p51(ferT) are two tyrosine kinases that share identical SH2 and kinase domains but differ in their N-terminal regions. To further explore the cellular functions of these two highly related tyrosine kinases, their subcellular distribution profiles and in vivo phosphorylation activity were followed using double immunofluorescence assay. When combined with immunoprecipitation analysis, this assay showed that p94(fer) can lead to the tyrosine phosphorylation and activation of Stat3 but not of Stat1 or Stat2. Native p94(fer) exerted this activity when residing in the cytoplasm. However, modified forms of p94(fer), which are constitutively nuclear, could also lead to the phosphorylation of Stat3. Endogenous Stat3 and p94(fer) co-immunoprecipitated with each other, thus proving the interaction of these two proteins in vivo. Unlike p94(fer), p51(ferT) did not induce the phosphorylation of Stat3 but led to the phosphorylation of other nuclear proteins. Replacing the unique 43-amino acid-long N-terminal tail of p51(ferT) with a parallel segment from the N-terminal tail of p94(fer) did not change the subcellular localization of p51(ferT) but enabled it to activate Stat3. Thus the different N-terminal sequences of p94(fer) and p51(ferT) can affect their ability to induce phosphorylation of Stat3 and most probably direct their different cellular functions. 相似文献
13.
The Ras/Raf/extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathway is known to cross-talk with other signaling pathways, including phosphatidylinositol 3-kinase (PI3K)/Akt pathway. However, the role of PI3K in ERK-1/2 activation induced by tyrosine kinase receptors was not fully understood. Here, we report that two structurally distinct PI3K inhibitors, wortmannin and LY294002, inhibited insulin-induced activation of ERK1/2 but had no effect on EGF-induced activation of ERK1/2 in hepatocellular carcinoma BEL-7402 and SMMC-7721 cells, breast cancer MCF-7 cells, and prostate cancer LNCaP cells. Although protein kinase C could act as a mediator between PI3K and ERK1/2, protein kinase C inhibitor chelerythrine chloride did not inhibit insulin-induced ERK1/2 activation. Both insulin- and EGF-induced ERK1/2 activation are strictly dependent on Ras activation, however, wortmannin only inhibited insulin-induced, but not EGF-induced Ras activation. These results indicate that PI3K plays different roles in the activation of Ras/ERK1/2 signaling by insulin and EGF, and that insulin-stimulated, but not EGF-stimulated, ERK1/2 and Akt signalings diverge at PI3K. 相似文献
14.
15.
Allen MP Xu M Linseman DA Pawlowski JE Bokoch GM Heidenreich KA Wierman ME 《The Journal of biological chemistry》2002,277(41):38133-38140
16.
17.
Trakul N Menard RE Schade GR Qian Z Rosner MR 《The Journal of biological chemistry》2005,280(26):24931-24940
Raf kinase inhibitory protein (RKIP; also known as phosphatidylethanolamine-binding protein or PEBP) is a modulator of the Raf/MAPK signaling cascade and a suppressor of metastatic cancer. Here, we show that RKIP inhibits MAPK by regulating Raf-1 activation; specifically, RKIP acts subsequent to Raf-1 membrane recruitment, prevents association of Raf-1 and p21-activated kinase (PAK), and blocks phosphorylation of the Raf-1 kinase domain by PAK and Src family kinases. Mutation of the PAK and Src phosphorylation sites on Raf-1 to aspartate, a phosphate mimic, prevented RKIP association with or inhibition of Raf-1 signaling. Interestingly, although RKIP can interact with B-Raf, RKIP depletion had no effect on activation of B-Raf. Because c-Raf-1 and B-Raf are both required for maximal MAPK stimulation by epidermal growth factor in neuronal and epithelial cell lines, we determined whether RKIP significantly affects MAPK signaling. In fact, RKIP depletion increased not only the amplitude but also the sensitivity of MAPK and DNA synthesis to epidermal growth factor stimulation by up to an order of magnitude. These results indicate that selective modulation of c-Raf-1 but not B-Raf activation by RKIP can limit the dynamic range of the MAPK signaling response to growth factors and may play a critical role in growth and development. 相似文献
18.
Interleukin-13 induction of 15-lipoxygenase gene expression requires p38 mitogen-activated protein kinase-mediated serine 727 phosphorylation of Stat1 and Stat3 总被引:4,自引:0,他引:4
下载免费PDF全文

Xu B Bhattacharjee A Roy B Xu HM Anthony D Frank DA Feldman GM Cathcart MK 《Molecular and cellular biology》2003,23(11):3918-3928
19.
We have characterized the role of Drosophila PI3K and AKT in ERK pathway activation involving insulin-induced proliferation using Drosophila Schneider cells. After insulin treatment, dPI3K and dAKT activities were both increased along with activation of the dERK pathway components dMEK and dERK. The insulin-induced activations of dERK and dAKT were blocked by LY294002, dPTEN, and by an AKT inhibitor, indicating involvement of dPI3K and dAKT in the insulin-induced dERK and dAKT activations. Proliferation and the G1 to S phase cell cycle progression due to insulin were also blocked by PI3K and AKT inhibitors, indicating that the Drosophila PI3K-AKT pathway involves insulin-mediated cell proliferation. The insulin-stimulated size increase was blocked by both LY294002 and AKT inhibitor, not by U0126, indicating that insulin-mediated size control by dPI3K and dAKT occurs independently of the ERK pathway. This study indicates that dPI3K and dAKT are involved in insulin-induced ERK pathway activation leading to proliferation in Drosophila Schneider cells. 相似文献
20.
Fas activation of the p38 mitogen-activated protein kinase signalling pathway requires ICE/CED-3 family proteases. 总被引:15,自引:2,他引:15
下载免费PDF全文

P Juo C J Kuo S E Reynolds R F Konz J Raingeaud R J Davis H P Biemann J Blenis 《Molecular and cellular biology》1997,17(1):24-35
The Fas receptor mediates a signalling cascade resulting in programmed cell death (apoptosis) within hours of receptor cross-linking. In this study Fas activated the stress-responsive mitogen-activated protein kinases, p38 and JNK, within 2 h in Jurkat T lymphocytes but not the mitogen-responsive kinase ERK1 or pp70S6k. Fas activation of p38 correlated temporally with the onset of apoptosis, and transfection of constitutively active MKK3 (glu), an upstream regulator of p38, potentiated Fas-induced cell death, suggesting a potential involvement of the MKK3/p38 activation pathway in Fas-mediated apoptosis. Fas has been shown to require ICE (interleukin-1 beta-converting enzyme) family proteases to induce apoptosis from studies utilizing the cowpox ICE inhibitor protein CrmA, the synthetic tetrapeptide ICE inhibitor YVAD-CMK, and the tripeptide pan-ICE inhibitor Z-VAD-FMK. In this study, crmA antagonized, and YVAD-CMK and Z-VAD-FMK completely inhibited, Fas activation of p38 kinase activity, demonstrating that Fas-dependent activation of p38 requires ICE/CED-3 family members and conversely that the MKK3/p38 activation cascade represents a downstream target for the ICE/CED-3 family proteases. Intriguingly, p38 activation by sorbitol and etoposide was resistant to YVAD-CMK and Z-VAD-FMK, suggesting the existence of an additional mechanism(s) of p38 regulation. The ICE/CED-3 family-p38 regulatory relationship described in the current work indicates that in addition to the previously described destructive cleavage of substrates such as poly(ADP ribose) polymerase, lamins, and topoisomerase, the apoptotic cysteine proteases also function to regulate stress kinase signalling cascades. 相似文献