首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Considerable progress was made over the last few years in understanding the mechanism of folding of cytochrome c551, a small acidic hemeprotein from Pseudomonas aeruginosa. Comparison of our results with those obtained by others on horse heart cytochrome c allows to draw some general conclusions on the structural features that are common determinants in the folding of members of the cytochrome c family.  相似文献   

2.
Considerable progress was made over the last few years in understanding the mechanism of folding of cytochrome c551, a small acidic hemeprotein from Pseudomonas aeruginosa. Comparison of our results with those obtained by others on horse heart cytochrome c allows to draw some general conclusions on the structural features that are common determinants in the folding of members of the cytochrome c family.  相似文献   

3.
FT-Raman光谱研究金属硫蛋白的折叠过程   总被引:2,自引:0,他引:2       下载免费PDF全文
为探索金属硫蛋白( MT) 的折叠过程,寻找含硫蛋白折叠的动力,采用调节溶液pH 值的方法,使MT 处于不同的折叠状态。 测定了在pH1 .0 - 7 .5 时溶液的Raman 谱, 进而得出MT 结构的变化。实验数据表明,在pH= 4 时蛋白质的二级结构出现了两个转折点,提示MT 折叠过程中有两个中间态存在。根据实验结果,对MT 主链折叠的动力进行了讨论。  相似文献   

4.
The refolding kinetics of Cobrotoxin (CBTX), a small all beta-sheet protein is investigated using a variety of biophysical techniques including quenched-flow hydrogen-deuterium (H/D) exchange in conjunction with two-dimensional NMR spectroscopy. Urea-induced equilibrium unfolding of CBTX follows a two-state mechanism with no distinct intermediates. The protein is observed to fold very rapidly within 250 ms. Both the refolding and the unfolding limbs of the chevron plot of CBTX show a prominent curvature suggesting the accumulation of kinetic intermediates. Quenched-flow H/D exchange data suggest the presence of a broad continuum of kinetic intermediates between the unfolded and native states of the protein. Comparison of the native state hydrogen exchange data and the results of the quenched-flow H/D exchange experiments, reveals that the residues constituting the folding core of CBTX are not a subset of the slow exchange core. To our knowledge, this is the first report wherein the refolding of a small all beta-sheet protein is shown to be a multi-step process involving the accumulation of kinetic intermediates.  相似文献   

5.
6.
Abstract We previously showed that GAU codons are preferred (relative to synonymous GAC codons) for encoding aspartates specifically at the N-termini of α-helices in human, but not in E. coli, proteins. To test if this difference reflected a general difference between eucaryotes and procaryotes, we now extended the analysis to include the proteins and coding sequences of mammals, vertebrates, S. cerevisiae, and plants. We found that the GAU-α-helix correlation is also strong in non-human mammalian and vertebrate proteins but is much weaker or insignificant in S. cerevisiae and plants. The vertebrate correlations are of sufficient strength to enhance α-helix N-terminus prediction. Additional results, including the observation that the correlation is significantly enhanced when proteins that are known to be correctly expressed in recombinant procaryotic systems are excluded, suggest that the correlation is induced at the level of protein translation and folding and not at the nucleic acid level. To the best of our knowledge, it is not explicable by the canonical picture of protein expression and folding, suggesting the existence of a novel evolutionary selection mechanism. One possible explanation is that some α-helix N-terminal GAU codons may facilitate correct co-translational folding in vertebrates.  相似文献   

7.
Theoretical and in vitro experiments suggest that protein folding cores form early in the process of folding, and that proteins may have evolved to optimize both folding speed and native-state stability. In our previous work (Chen et al., Structure, 14 (2006) 1401), we developed a set of empirical potential functions and used them to analyze interaction energies among secondary-structure elements in two β-sandwich proteins. Our work on this group of proteins demonstrated that the predicted folding core also harbors residues that form native-like interactions early in the folding reaction. In the current work, we have tested our empirical potential functions on structurally-different proteins for which the folding cores have been revealed by protein hydrogen-deuterium exchange experiments. Using a set of 29 unrelated proteins, which have been extensively studied in the literature, we demonstrate that the average prediction result from our method is significantly better than predictions based on other computational methods. Our study is an important step towards the ultimate goal of understanding the correlation between folding cores and native structures.  相似文献   

8.
简要综述了近年来蛋白质折叠机理的理论研究。首先回顾了蛋白质折叠理论的发展历程,然后对折叠中间体的研究现状作了较详细的介绍。同时,对折叠机理理论研究中的几种理论模型和模拟算法作了细致评述,分析了其现状和存在的问题。最后,总结和讨论了折叠机理理论研究的现存问题及研究热点,并展望了该领域研究的发展趋势。  相似文献   

9.
    
Franc Avbelj  John Moult 《Proteins》1995,23(2):129-141
Experimental evidence and theoretical models both suggest that protein folding begins by specific short regions of the polypeptide chain intermittently assuming conformations close to their final ones. The independent folding properties and small size of these folding initiation sites make them suitable subjects for computational methods aimed at deriving structure from sequence. We have used a torsion space Monte Carlo procedure together with an all-atom free energy function to investigate the folding of a set of such sites. The free energy function is derived by a potential of mean force analysis of experimental protein structures. The most important contributions to the total free energy are the local main chain electrostatics, main chain hydrogen bonds, and the burial of nonpolar area. Six proposed independent folding units and four control peptides 11–14 residues long have been investigated. Thirty Monte Carlo simulations were performed on each peptide, starting from different random conformations. Five of the six folding units adopted conformations close to the experimental ones in some of the runs. None of the controls did so, as expected. The generated conformations which are close to the experimental ones have among the lowest free energies encountered, although some less native like low free energy conformations were also found. The effectiveness of the method on these peptides, which have a wide variety of experimental conformations, is encouraging in two ways: First, it provides independent evidence that these regions of the sequences are able to adopt native like conformations early in folding, and therefore are most probably key components of the folding pathways. Second, it demonstrates that available simulation methods and free energy functions are able to produce reasonably accurate structures. Extensions of the methods to the folding of larger portions of proteins are suggested. © 1995 Wiley-Liss, Inc.  相似文献   

10.
The equilibrium unfolding of the major Physa acuta glutathione transferase isoenzyme (P. acuta GST(3)) has been performed using guanidinium chloride (GdmCl), urea, and acid denaturation to investigate the unfolding intermediates. Protein transitions were monitored by intrinsic fluorescence. The results indicate that unfolding of P. acuta GST(3) using GdmCl (0-3.0M) is a multistep process, i.e., three intermediates coexist in equilibrium. The first intermediate, a partially dissociated dimer, exists at low GdmCl concentration (approximately at 0.7M). At 1.2M GdmCl, a dimeric intermediate with a compact structure was observed. This intermediate undergoes dissociation into structural monomers at 1.75M of GdmCl. The monomeric intermediate started to be completely unfolding at higher GdmCl concentrations (>1.8M). Unfolding using urea (0-7.0M) and acid-induced structures as well as the fluorescence of 8-anilino-1-naphthalenesulfonate in the presence of different GdmCl concentrations confirmed that the unfolding is a multistep process. At concentrations of GdmCl or urea less than the midpoints or at the midpoint pH (pH 4.2-4.6), the unfolding transition is protein concentration independent and involved a change in the subunit tertiary structure yielding a partially active dimeric intermediate. The binding of glutathione to the enzyme active site stabilizes the native dimeric state.  相似文献   

11.
The conversion of the cellular form of the prion protein (PrPC) to an altered disease state, generally denoted as scrapie isoform (PrPSc), appears to be a crucial molecular event in prion diseases. The details of this conformational transition are not fully understood, but it is perceived that they are associated with misfolding of PrP or its incapacity to maintain the native fold during its cell cycle. Here we present a tryptophan mutant of PrP (F198W), which has enhanced fluorescence sensitivity to unfolding/refolding transitions. Equilibrium folding was studied by circular dichroism and fluorescence. Pressure-jump experiments were successfully applied to reveal rapid submillisecond folding events of PrP at temperatures not accessed before. D. C. Jenkins and D. S. Pearson contributed equally.  相似文献   

12.
In this paper, we propose an analytically tractable model of protein folding based on one-dimensional general random walk. A second-order differential equation for the mean folding time of a single protein is constructed which can be used to derive the observed relationship between the folding rate constant and the number of native contacts. The parameters appearing in the model can be determined by fitting the theoretical prediction to the experimental result. In addition, taking into account the fact that the number of native contacts is almost proportional to the relative contact order, we can also explain the observed relationship between the folding rate constant and the relative contact order.  相似文献   

13.
Despite a vast amount information on the interplay of GroEL, GroES, and ATP in chaperone-assisted folding, the molecular details on the conformational dynamics of folding polypeptide during its GroEL/GroES-assisted folding cycle is quite limited. Practically no such studies have been reported to date on large proteins, which often have difficulty folding in vitro. The effect of the GroEL/GroES chaperonin system on the folding pathway of an 82-kDa slow folding protein, malate synthase G (MSG), was investigated. GroEL bound to the burst phase intermediate of MSG and accelerated the slowest kinetic phase associated with the formation of native topology in the spontaneous folding pathway. GroEL slowly induced conformational changes on the bound burst phase intermediate, which was then transformed into a more folding-compatible form. Subsequent addition of ATP or GroES/ATP to the GroEL-MSG complex led to the formation of the native state via a compact intermediate with the rate several times faster than that of spontaneous refolding. The presence of GroES doubled the ATP-dependent reactivation rate of bound MSG by preventing multiple cycles of its GroEL binding and release. Because GroES bound to the trans side of GroEL-MSG complex, it may be anticipated that confinement of the substrate underneath the co-chaperone is not required for accelerating the rate in the assisted folding pathway. The potential role of GroEL/GroES in assisted folding is most likely to modulate the conformation of MSG intermediates that can fold faster and thereby eliminate the possibility of partial aggregation caused by the slow folding intermediates during its spontaneous refolding pathway.  相似文献   

14.
We study the thermodynamic behavior of a model protein with 54 amino acidsthat is designed to form a three-helix bundle in its native state. The model contains three types of amino acids and five to six atoms per amino acid, and has the Ramachandran torsion angles as its only degrees of freedom.The force field is based on hydrogen bonds and effective hydrophobicity forces. We study how the character of the collapse transition depends on the strengths of these forces. For a suitable choice of these two parameters, it is found that the collapse transition is first-order-like and coincides with the folding transition. Also shown is that the corresponding one- and two-helix segments make less stable secondary structure than the three-helix sequence.  相似文献   

15.
    
The main problems found in designing drugs are those of optimizing the drug-target interaction and of avoiding the insurgence of resistance. We suggest a scheme for the design of inhibitors that can be used as leads for the development of a drug and that do not face either of these problems, and then apply it to the case of HIV-1-PR. It is based on the knowledge that the folding of single-domain proteins, such as each of the monomers forming the HIV-1-PR homodimer, is controlled by local elementary structures (LES), stabilized by local contacts among hydrophobic, strongly interacting, and highly conserved amino acids that play a central role in the folding process. Because LES have evolved over many generations to recognize and strongly interact with each other so as to make the protein fold fast and avoid aggregation with other proteins, highly specific (and thus little toxic) as well as effective folding-inhibitor molecules suggest themselves: short peptides (or eventually their mimetic molecules) displaying the same amino acid sequence of that of LES (p-LES). Aside from being specific and efficient, these inhibitors are expected not to induce resistance; in fact, mutations in HIV-1-PR that successfully avoid the action of p-LES imply the destabilization of one or more LES and thus should lead to protein denaturation. Making use of Monte Carlo simulations, we first identify the LES of the HIV-1-PR and then show that the corresponding p-LES peptides act as effective inhibitors of the folding of the protease.  相似文献   

16.
It has been reported recently that classical, isothermal–isobaric molecular dynamics (NTP MD) simulations at a time step of 1.00 fs of the standard-mass time (Δt=1.00 fssmt) and a temperature of ≤340 K using uniformly reduced atomic masses by tenfold offers better configurational sampling than standard-mass NTP MD simulations at the same time step. However, it has long been reported that atomic masses can also be increased to improve configurational sampling because higher atomic masses permit the use of a longer time step. It is worth investigating whether standard-mass NTP MD simulations at Δt=2.00 or 3.16 fssmt can offer better or comparable configurational sampling than low-mass NTP MD simulations at Δt=1.00 fssmt. This article reports folding simulations of two β-hairpins showing that the configurational sampling efficiency of NTP MD simulations using atomic masses uniformly reduced by tenfold at Δt=1.00 fssmt is statistically equivalent to and better than those using standard masses at Δt=3.16 and 2.00 fssmt, respectively. The results confirm that, relative to those using standard masses at routine Δt=2.00 fssmt, the low-mass NTP MD simulations at Δt=1.00 fssmt are a simple and generic technique to enhance configurational sampling at temperatures of ≤340 K.  相似文献   

17.
Some research has suggested that patches of six constitute an important amino acid window length in proteins for conveying information. We present database evidence that supports this conjecture, as well as additional recurrence-based data that characterization and quantification of these words affect the folding/aggregation features of proteins. Other indirect evidence is presented and discussed.  相似文献   

18.
The effects of the strong stabilizing anion, phosphate, on the oxidative folding of bovine pancreatic ribonuclease A were examined. Phosphate was found to catalyze several steps involved in the oxidative folding process at pH 8.0 and 25°C, resulting in an increase in the rate of pre-equilibration of unstructured species on the folding pathway. In the presence of 400 mM phosphate, the overall increase in the rate of regeneration of native protein was caused primarily by the increased formation and stabilization of tertiary structure in the nativelike intermediates, des-[40-95] and des-[65-72], involved in the rate-determining step. Based on the regeneration of native protein and the stability of Cys Ala substituted mutant analogs of the des-species, (C40A, C95A) and (C65A, C72A), it is suggested that the primary role of phosphate is to catalyze the overall regeneration of native protein through nonspecific electrostatic and hydrogen-bonding effects on the protein and solvent.  相似文献   

19.
A method for analyzing differences in the folding mechanisms of proteins in the same family is presented. Using only information from the amino acid sequences, contact maps derived from the interresidue average distances are employed. These maps, referred to as average distance maps (ADM), are applied to the folding of c-type lysozymes. The results reveal that the ADMs of these lysozymes reflect the differences in the detailed folding mechanisms. Further possible applications of the present method are also discussed.  相似文献   

20.
Molten globule intermediates and protein folding   总被引:7,自引:0,他引:7  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号