首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(3-6):285-291
Oxygen-derived free radicals have been implicated as possible mediators in the development of tissue injury induced by ischemia and reperfusion. Clamping of the celiac artery in rats reduced the gastric mucosal blood flow to 10% of that measured before the clamping. The area of gastric erosions and thiobarbituric acid (TBA) reactants in gastric mucosa were significantly increased 60 and 90 min after clamping. These changes were inhibited by treatment with SOD and catalase. Thirty and 60 min after reoxyganation, produced by removal of the clamps following 30 min of ischemia, gastric mucosal injury and the increase in TBA reactants were markedly aggravated compared with those induced by ischemia alone. SOD and catalase significantly inhibited these changes. The serum a-tocopherol/cholesterol ratio, an index of in vivo lipid peroxidation, was significantly decreased after long periods of ischemia (60 and 90 min), or after 30 and 60 min of reperfusion following 30 min of ischemia. These results indicated that active oxygen species and lipid peroxidation may play a role in the pathogenesis of gastric mucosal injury induced by both ischemia alone and ischemia-reperfusion. Although, allopurinol inhibited the formation of gastric mucosal injury and the increase in TBA reactants in gastric mucosa, the depletion of polymorphonuclear leukocytes (PMN) counts induced by an injection of anti-rat PMN antibody did not inhibit these changes. As compared with the hypoxanthine-xanthine oxidase system, PMN seem to play a relatively small part in the formation of gastric mucosal injury induced by ischemia-reperfusion.  相似文献   

2.
To determine whether oxygen-derived free radicals play an important role in the pathogenesis of stress-induced tissue injury, the effect of a superoxide dismutase derivative, which binds to albumin and circulates with a half-life of 6 h in intact rats, on acute gastric mucosal lesion was observed in rats which were given water-immersion-restraint. This enzyme derivative also circulated bound to albumin with a half-life of 8 h in rats which were challenged with water-immersion-restraint. This treatment significantly perturbed systemic circulation of animals by decreasing the effective volume of circulating blood, increased vascular permeability of the gastric mucosa, and induced acute gastric mucosal lesion. Intravenous administration of this enzyme derivative normalized both systemic circulation and vascular permeability of the gastric mucosa and prevented the occurrence of stress-induced gastric injury. These findings suggest that the superoxide radical and/or its metabolite(s) plays an important role in the pathogenesis of stress-induced acute gastric mucosal lesion.  相似文献   

3.
Histamine release have been demonstrated in haemorrhagic shock. There are some observations that oxygen free radicals can cause histamine release. Oxygen free radicals play a role in the pathogenesis of gastric mucosal lesions. The goal of this study was to determine whether ranitidine or SOD and allopurinol pretreatment modify the histamine release during and after the haemorrhagic shock in the rat. In the anaesthetized rat 0.1 N HCl was instilled into the stomach and the rat was bled to reduce the blood pressure to 30 mmHg for 20 min. The shed blood was reinfused. Twenty min later the stomach was removed. The area of gastric mucosal lesions were measured, histological grading was made. Blood samples taken from the carotid artery were examined by radioimmunoassay (IMMUNOTECH) to determine the plasma histamine level. Plasma histamine level did not change significantly during the preparative surgery, but there was a significant increase of histamine level by the end of shock period. After the reinfusion of the blood the plasma histamine remained essentially at the same level for five min. Oxygen free radicals did not cause an important histamine release. By the end of the experiment the histamine level decreased dramatically. Ranitidine, allopurinol and SOD pretreatment provided significant protection against the gastric mucosal lesions. Allopurinol and SOD did not influence significantly the histamine level. Ranitidine caused significant histamine release immediately after the injection and every histamine value was significantly higher in this group except for the final value which was lower than the control one. The oxygen free radicals were not found as endogenous histamine releasers in this study.  相似文献   

4.
Reactive oxygen species and lipid peroxidation play a role in the pathogenesis induced by the non-steroidal anti-inflammatory drug indomethacin. Melatonin (MLT) protection against indomethacin-induced oxidative tissue injury was investigated in gastric mucosa and testis of rats. MLT was administered intragastrically (i.g.) 30 min before the administration to fasted rats of 20 mg indomethacin/kg rat given i.g.. The area of gastric lesion as well as thiobarbituric acid reactive substances (TBARS) and lactate dehydrogenase (LDH) activity were found to be significantly increased 4 h after administration of indomethacin in rat gastric mucosa and testis indicating acute oxidative injury. MLT pretreatment reduced gastric lesion area to 80% of the indomethacin-treated rats and reduced the rise in TBARS concentration. MLT treatment reduced the LDH activity increase in testis but not in gastric mucosa. In indomethacin-treated rats, both the cytosolic Cu,Zn superoxide dismutase (Cu,Zn-SOD) and mitochondrial Mn-SOD activities were significantly diminished in gastric mucosa as well as the total SOD activity in testis. In addition, glutathione (GSH) content in both tissues was markedly decreased following indomethacin treatment. Pretreatment with MLT significantly ameliorated both the inhibition of SOD activity and the decreased GSH content in both tissues. Thus, these results show the effective antiperoxidative and preventive actions of MLT against indomethacin-induced gastric mucosal damage and testicular oxidative injury and we propose that this action might be relevant for its use with other free radical generating drugs.  相似文献   

5.
BACKGROUND: The exposure of gastric mucosa to damaging factors, such as ethanol, water restraint stress, or ischemia followed by reperfusion, produces pathological changes: inflammatory process, hemorrhagic erosions, even acute ulcers. The base of these changes is a disturbance of protective mechanisms and disrupture of gastric mucosal barrier. Previous studies pointed out the role of disturbances of gastric blood flow, mucus secretion and involvement of prostaglandins and nitric oxide formation in the pathomechanism of gastric mucosa lesions. The role of reactive oxygen species (ROS) in these processes has been little studied. Aim: The purpose of our present investigations is to explain the participation of ROS in acute gastric mucosal damage by various irritants. MATERIAL AND METHODS: Experiments were carrying out on 80 male Wistar rats. To assess gastric blood flow (GBF) laser Doppler flowmeter was used. The area of gastric lesions was established by planimetry. The levels of proinflammatory cytokines were measured by ELISA technique. The colorimetric assays were used to determine of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) as well as superoxide dismutase (SOD) activity. RESULTS: We demonstrated that 3.5 h of water immersion and restraint stress (WRS), 30 min of gastric ischemia followed by 60 min of reperfusion or intragastric administration of 100% ethanol, all resulted in appearance of acute gastric mucosal lesions accompanied by a significant decrease of gastric blood flow. These lesions are also accompanied by the significant increase of proinflammatory cytokines including interleukin-1 beta (IL-1beta) and tumor necrosis factor alpha (TNFalpha) plasma level. Biological effects of ROS were estimated by measuring tissue level of MDA and 4-HNE, the products of lipid peroxydation by ROS, as well as the activity of SOD, the scavanger of ROS. It was established that 3.5 h of WRS, ischemia-reperfusion and 100% ethanol lead to significant increase of MDA and 4-HNE mucosal level, accompanied by a decrease of SOD activity (significant in WRS and ethanol application). CONCLUSIONS: The pathogenesis of experimental mucosal damage in rat stomach includes the generation of ROS that seem to play an important role, namely due to generation of lipid peroxides, accompanied by impairment of antioxidative enzyme activity of cells.  相似文献   

6.
Ischemia followed by reflow often results in tissue injury. Although reactive oxygens seem to play an important role in the pathogenesis of postischemic reflow-induced tissue injury, the mechanism and an efficient way to inhibit oxidative injury are not known. We studied the mechanism by which hepatic transport function was inhibited by a transient occlusion followed by reflow of the portal vein and hepatic artery by using a superoxide dismutase (SOD) derivative (SM-SOD) which circulates bound to albumin with a half-life of 6 h. Occlusion of the hepatic vessels for 20 min followed by reflow for 60 min significantly inhibited transhepatic transport of cholephilic ligands, such as bromosulfophthalein (BSP) and taurocholic acid. Intravenous administration of SM-SOD markedly inhibited the reflow-induced decrease in transhepatic transport of these ligands. Thiobarbituric acid - reactive metabolites (TBAR) in the liver and plasma remained unchanged during occlusion and reflow, while TBAR in the bile increased significantly. Intravenous injection of SM-SOD inhibited the reflow-induced increase in biliary TBAR. Xanthine oxidase activity in plasma also increased during occlusion and reflow by an SM-SOD-inhibitable mechanism. Polymorphonuclear leukocyte-dependent chemiluminescence of the peripheral blood remained unchanged during occlusion, but increased markedly with time after reflow. SM-SOD also inhibited the increase in chemiluminescence almost completely. These and other results suggested that the superoxide radical and/or its metabolite(s) might play an important role in the pathogenesis of the reflow-induced liver injury and that SM-SOD might be useful for studying the mechanism for tissue injury caused by oxygen toxicity.  相似文献   

7.
The aim of the present study was to assess the role of endothelin (ET) in ischemia-reperfusion (I/R)-induced mucosal injury. Mucosal permeability ((51)Cr-EDTA clearance) and tissue myeloperoxidase (MPO) activity were significantly increased after 30 min of ischemia followed by 30 min of reperfusion. The I/R-induced increases in mucosal permeability and polymorphonuclear leukocyte (PMN) infiltration were significantly attenuated by pretreatments with ET(A) (BQ-485) and/or ET(B) (BQ-788) receptor antagonists. Monoclonal antibody (MAb) directed against intercellular adhesion molecule-1 (ICAM-1; MAb 1A29) and superoxide dismutase (SOD) pretreatments significantly attenuated the increased mucosal permeability and PMN infiltration in a similar manner as with ET receptor antagonists. Superior mesenteric artery blood flow was significantly reduced during the reperfusion period. Both ET receptor antagonists caused a significant rise in blood flow compared with an untreated I/R group. In conclusion, our data suggest that ET(A) and/or ET(B) receptors, ICAM-1, and superoxide play an important role in I/R-induced mucosal dysfunction and PMN infiltration. Furthermore, ET is involved in the pathogenesis of post-reperfusion-induced damage and beneficial effects of ET receptor antagonism are related to an improvement of disturbed blood flow during the reperfusion period.  相似文献   

8.
Vascular factors play an important role in the pathogenesis and prevention of acute gastric mucosal lesions. Endothelin-3 (ET-3), a potent vasoactive peptide, was infused intra-arterially to induce gastric microvascular and hemorrhagic mucosal lesions, and to enhance the damaging effects of dilute HCl and ethanol. ET-3 antibody was injected intravenously to decrease hemorrhagic mucosal lesions induced by ethanol. Locally infused ET (0.01, 0.1, and 1.0 nmol.100 g-1.min-1 for up to 15 min) was followed in some cases by intragastric dilute ethanol or HCl, which alone caused no or only mild vascular and mucosal lesions. Monastral blue was used to visualize and quantify vascular injury. ET-3 produced dose-dependent vascular lesions that affected the walls of mucosal capillaries and venules and induced mucosal congestion and focal endothelial labeling in vessels of the gastric muscular layers. The highest dose of ET induced hemorrhagic gastric mucosal lesions, mortality, and periods of hyper- and hypotension in the rat. Medium and low doses of ET-3 caused vascular injury, and dose-dependently potentiated the vascular and hemorrhagic mucosal lesions caused by dilute HCl and ethanol. Indomethacin slightly enhanced damage induced by ET and 50% ethanol, suggesting a limited mediatory role of prostaglandins in the ET-induced mucosal lesions. Anti-ET-3 serum dose-dependently decreased but did not abolish the hemorrhagic gastric mucosal lesions induced by 75% ethanol. Thus, ET-3 causes endothelial damage in capillaries and venules of rat stomach and predisposes to mucosal damage even after exposure to dilute ethanol or HCl. ET is more potent than leukotrienes and histamine and thus may play an important role in the mechanisms of acute gastric mucosal injury and protection where the vascular network appears to be a major target.  相似文献   

9.
目的:观察肢体缺血再灌注(LI/R)对胃粘膜的损伤作用及缺血预处理对其影响,探讨胃粘膜损伤的机制及缺血预处理(IPC)的作用机理。方法:观察并测定肢体缺血4h再灌注4h后以及应用肢体缺血预处理干预后各组胃粘膜损伤指数,胃结合粘液量;检测胃粘膜中髓过氧化物酶(MPO)、超氧化物歧化酶(SOD)、丙二醛(MDA)、黄嘌呤氧化酶(XOD)含量的变化以及血浆中乳酸脱氢酶(LDH)的含量变化。结果:大鼠LI/R后胃粘膜损伤指数增加;胃结合粘液量较对照组显著下降;胃粘膜中MPO、MDA、XOD的值均较对照组增加,血浆中LDH的含量亦较对照组显著增加,胃粘膜组织中SOD的酶活力下降;IPC组与LIR组对比,胃结合粘液量较LIR组显著增加:胃粘膜损伤指数、胃粘膜中MPO的含量、以及胃粘膜中MDA、XOD、LDH均较LI/R组明显降低;胃粘膜中SOD酶活力增强。结论:LI/R作为应激原可引起胃粘膜损伤,导致应激性溃疡的发生;自由基在肢体缺血再/灌注后继发胃粘膜损伤过程中发挥作用。缺血预处理可减轻肢体缺血再灌注后的胃粘膜损伤,其作用机制可能是通过减少自由基的产生而发挥其保护作用。  相似文献   

10.
To elucidate the role of diamines in the pathogenesis of post-ischemic reperfusion-induced tissue injury, the effect of diamine oxidase was studied in the rat whose superior mesenteric artery was occluded for 15 min followed by 30 min reperfusion. Kinetic analysis using radiolabeled albumin revealed that the mucosal permeability of the reperfused small intestine increased significantly. Histological examination of the reperfused intestine revealed a marked degeneration of its mucosal layer. Intravenous administration of diamine oxidase inhibited the reperfusion-induced increase in mucosal permeability of the intestine almost completely and preserved the structure of the small intestine. H1-antagonist chlorphenilamine and H2-antagonist famotidine also inhibited the reperfusion injury of the small intestine. These and other results suggested that extracellular diamines might play critical roles in post-ischemic reperfusion-induced injury of the small intestine.  相似文献   

11.
This study was designed to determine whether oxygen-derived free radicals play a role in the pathogenesis of gastric lesions produced by hemorrhagic shock in the rat. Allopurinol (Zyloric), an inhibitor of xanthine oxidase (responsible for the formation of superoxide radicals) and MTDQ-DA (Kontrad), a synthetic antioxidant of dihydroquinoline type were used. In the anesthetized rat 0.1 N HCl was instilled into the stomach and the rat was bled to reduce the blood pressure to 30 mmHg for 20 min. The blood shed was retransfused. Twenty min later the stomach was removed. The area of gastric mucosal lesions were measured, the activity of endogenous peroxidase was examined histochemically and a histological grading was made. Both allopurinol and MTDQ-DA significantly protected against hemorrhagic shock-induced gastric lesions and peroxidation. These results suggest that oxygen-derived free radicals play an important role in the formation of gastric lesions produced by ischemia plus 0.1 N HCl.  相似文献   

12.
We investigated whether, in rats, gastric prostacyclin (PGI2) prevented gastric mucosal injury that was induced by water-immersion restraint stress by inhibiting leukocyte activation. Gastric levels of 6-keto-PGF1alpha, a stable metabolite of PGI2, increased transiently 30 min after stress, followed by a decrease to below the baseline 6-8 h after stress. Gastric mucosal blood flow decreased to approximately 40% of the baseline level 8 h after stress. Myeloperoxidase activity was significantly increased 8 h after stress. Treatment with indomethacin before stress inhibited the increase in 6-keto-PGF1alpha levels and markedly reduced mucosal blood flow. It also markedly increased leukocyte accumulation and mucosal lesion formation. Iloprost, a stable PGI2 analog, inhibited the indomethacin-induced decrease in mucosal blood flow, mucosal lesion exacerbation, and increase in leukocyte accumulation. Nitrogen mustard-induced leukocytopenia inhibited the indomethacin-associated lesion exacerbation and the increase in leukocyte accumulation, but not the decreases in mucosal blood flow. These observations indicate that gastric PGI2 decreases gastric mucosal lesion formation primarily by inhibiting leukocyte accumulation.  相似文献   

13.
M Inoue  I Ebashi  N Watanabe  Y Morino 《Biochemistry》1989,28(16):6619-6624
Protection of tissues from oxidative stress is one of the major prerequisites for aerobic life. Since intravenously injected Cu2+/Zn2+-type superoxide dismutase (SOD) disappears from the circulation with a short half-life of 5 min, its clinical use as a scavenger for superoxide radical is limited. We synthesized a human erythrocyte type SOD derivative (SM-SOD) by linking 2 mol of hydrophobic organic anion, alpha-4-[( 6-(N-maleimido)hexanoyloxymethyl]cumyl]half-butyl-esterified poly(styrene-co-maleic acid) (SM), to the cysteinyl residues of the dimeric enzyme without decreasing enzymic activity. SM-SOD, but not SOD, bound to an albumin-Sepharose column; the bound SM-SOD was eluted by a buffer solution containing 0.5% sodium dodecyl sulfate or 10 mM warfarin, suggesting that SM-SOD reversibly binds to the warfarin site on albumin. Due to the amphipathic nature of the SMI moiety, SM-SOD bound also to cell membranes particularly when the pH was decreased. In vivo analysis in the rat revealed that intravenously injected SM-SOD circulated bound to albumin with a half-life of 6 h. Postischemic reperfusion arrhythmias were almost completely prevented by a single dose of SM-SOD, but not SOD. Thus, the prolonged half-life of SM-SOD in the circulation and its preferential accumulation in an injured site with decreased pH appeared to be responsible for preventing myocardial injury. These results suggest that superoxide radical and/or its metabolite(s) would play an important role in the pathogenesis of postischemic reperfusion arrhythmias and that SM-SOD may be useful for decreasing tissue injury in ischemic heart disease.  相似文献   

14.
氧自由基在应激性胃溃疡中的发病学意义   总被引:25,自引:1,他引:24  
李铁  张席锦 《生理学报》1993,45(3):286-291
本工作研究了氧自由基在大鼠冷冻束缚应激性胃溃疡中的发病学意义。实验结果如下:(1)以超氧自由基清除剂超氧化物歧化酶(SOD)或羟自由基清除剂二甲亚砜和甘露醇预先处理大鼠,均可显著地减轻胃粘膜损伤;(2)应激时,胃粘膜内的脂质过氧化分解产物丙二醛的含量显著升高;(3)组织化学的研究显示,胃粘膜层含有丰富的黄嘌呤氧化酶,其活性在应激时明显升高,预先用别嘌呤醇处理大鼠以抑制黄嘌呤氧化酶的活性,可使胃粘膜损伤显著减轻。上述结果提示,氧自由基是应激性胃溃疡的重要致病因子,而黄嘌呤氧化酶活性的升高似可能为应激时氧自由基生成增加的重要原因。  相似文献   

15.
目的:探讨高频电磁场曝露对大鼠胃粘膜急性损伤的治疗效应,以及血管内皮素1(endothelin-1,ET-1)、一氧化氮(nitric oxide,NO)及超氧化物岐化酶(superoxide dismutase,SOD)在高频电磁场这一效应中的作用。方法:SD大鼠胃粘膜急性损伤模型采用indomethaein灌胃法复制,高频电磁场曝露的条件为频率40.68MHz,电流输出30—50mA,曝露15min,1/d,对照组电磁场曝露条件相同,但无电流输出,观察电磁场曝露1或6次后大鼠胃粘膜损伤程度以及血浆ET-1、NO和SOD水平的变化。结果:电磁场曝露1次后,急性胃损伤大鼠胃粘膜损伤程度较对照组并无显著性差异(p〉0.05),血ET-1和NO水平均明显增高(P均〈0.05);曝露6次后,胃粘膜损伤程度较对照组明显改善(P〈0.05),但血ET-1和NO水平则与对照组无显著性差异(P〉0.05),血SOD水平在电磁场曝露1或6次后均无显著意义的变化(P均〉0.05)。结论:40.68MHz高频电磁场30—50mA曝露对大鼠胃粘膜急性损伤,呈现出有效的治疗效应,高频电磁场这一作用机制与ET-1、NO及SOD无关。  相似文献   

16.
The aims of our experiments were to clear up the possible correlations between the free radical mechanisms and the gastric cytoprotection of beta-carotene on HCl-induced gastric mucosal lesions. The beta-carotene was intragastrically given in doses of 1 and 10 mg/kg and 30 min. later 1 ml 0.6 N HCl was given to provoke the mucosal damage. After 1, 5, 15, 30 and 60 min. the animals were sacrificed. The number and severity of gastric mucosal lesions were calculated. The superoxide dismutase (SOD), glutathion peroxidase (GPX), catalase (CAT) activity and the malondialdehyde (MDA) and reduced glutathion (GSH) contents were determined from the gastric mucosa of rats. It was found that 1. beta-carotene was able to reduce the number and severity of ulcers only after 30 min.; 2. the CAT activity was decreased at 60 min. by carotene; 3. the GPX activity became dissimilar in the different groups after 15 min; 4. the changes of GSH were found to be similar ones; 5. the SOD activity was lower during the cyto-protection; 6. the MDA level remained practically unchanged. It has been concluded that 1. the free radicals are the consequences of the development of gastric ulcer and cytoprotection; 2. the scavenger character of beta-carotene is involved in its cytoprotective effect.  相似文献   

17.
电刺激下丘脑外侧区对大鼠胃缺血-再灌注损伤的影响   总被引:5,自引:1,他引:4  
Zhou XP  Zhang JF  Yan CD  Zhang YM 《生理学报》2002,54(5):435-440
采用夹闭大鼠腹腔动脉30min,松开动脉夹血流复灌60min的胃缺血-再灌注损伤(gastric ischemia reperfusion injury,GI-RI)模型,用电和化学刺激,电损毁的方法观察了下丘脑外侧区(lateral hypothalamic area,LHA)对GI-RI的影响,并对其机制进行了初步分析,结果表明:(1)以0.2,0.4,0.6mA的电流强度刺激LHA,GI-RI均显著加重,且有强度-效应依赖关系,LHA内注射L-谷氨酸(L-Glu)后,对LI-RI的效应与电刺激相似,电损毁双侧LHA,GI-RI面积较电刺激组明显减小;(2)损毁双侧背侧迷走复合体(dorsal vagal complex,DVC)或切损毁是LHA,GI-RI面积较电刺激组明显减小;(2)损 侧背侧迷走复合体(dorsal vagal complex,DVC)或切断膈下迷走神经均能取消电刺激LHA加重GI-RI的作用。(3)电刺激LHA使缺血-再灌注(ischemia-reperfusion,I-R)的胃粘膜丙二醛(MDA)含量升高,超氧化物歧化酶(SOD)活性降低;(4)电刺激LHA使I-R的胃液量和总酸排出量增多,而酸度,胃蛋白酶活性和胃壁结合粘液量等无明显改变,结果提示;LHA是对GI-RI具有加重作用的中枢部位,其作用是通过DVC及迷走神经下传的,电刺激LHA加重GI-RI的作用与胃粘膜MDA含量增加,SOD活性降低,胃液量和总酸排出量增加等因素有关,而似与酸度,胃蛋白酶活性,胃壁结合粘液量等因素无关。  相似文献   

18.
Gastric mucus plays an important role in gastric mucosal protection. Apart from its "barrier" function, it has been demonstrated that mucus protects gastric epithelial cells against toxic oxygen metabolites derived from the xanthine/ xanthine oxidase system. In this study, we investigated the effect of malotilate and sucralfate (mucus production stimulators) and N-acetylcysteine (mucolytic agent) on ischemia/reperfusion-induced gastric mucosal injury. Gastric ischemia was induced by 30 min clamping of the coeliac artery followed by 30 min of reperfusion. The mucus content was determined by the Alcian blue method. Sucralfate (100 mg/kg), malotilate (100 mg/kg), and N-acetylcysteine (100 mg/kg) were given orally 30 min before surgery. Both sucralfate and malotilate increased the mucus production in control rats. On the other hand, N-acetyloysteine significantly decreased mucus content in control (sham) group. A significant decrease of mucus content was found in the control and the N-acetylcysteine pretreated group during the period of ischemia. On the other hand, sucralfate and malotilate prevented the decrease the content of mucus during ischemia. A similar result can be seen after ischemia/reperfusion. In the control group and N-acetylcysteine pretreated group a significant decrease of adherent mucus content was found. However, sucralfate and malotilate increased mucus production (sucralfate significantly). Sucralfate and malotilate also significantly protected the gastric mucosa against ischemia/reperfusion-induced injury. However, N-acetylcysteine significantly increased gastric mucosal injury after ischemia/reperfusion. These results suggest that gastric mucus may be involved in the protection of gastric mucosa after ischemia/reperfusion.  相似文献   

19.
It has been observed earlier that gastric cytoprotection produced by PGI2, beta-carotene, small doses of atropine or cimetidine has failed in surgically vagotomized rats. This phenomenon may be in connection with endogenous prostaglandins (PGs) and glutathione (GSH) level of the gastric mucosa. The aims of the study were to evaluate the effect of vagus nerve on the gastric mucosal 6-keto-PGF1 alpha, PGE2 and glutathione after intragastric 96% ethanol (ETOH) treatment. The observations were carried out on CFY rats. The gastric mucosal damage was produced by intragastric administration of 1 ml 96% ETOH. Acute bilateral surgical vagotomy (ASV) was carried out 30 min prior to ETOH application. The animals were sacrificed 1, 5, 15 or 60 min after ETOH installation. The number and the severity of gastric mucosal lesions were noted and 6-keto-PGF1 alpha, PGE2 an GSH contents of gastric mucosa were measured. It has been found that: 1. the number and the severity of gastric mucosal lesions were increased after ASV compared to those with intact vagal nerve, 2. 96% ETOH treatment increased both the gastric mucosal PGs and GSH levels, 3. 6-keto-PGF1 alpha peaked at 5 min PGE2 and GSH peaked at 15 min after ETOH treatment, 4. ASV decreased the gastric mucosal PGs content and delayed the peaks of PGE2 and GSH. It has been concluded that the decreased content of PGs and the delayed GSH increase may play a pathological role in the failure of gastric cytoprotection of rats after ASV.  相似文献   

20.
Erkasap N  Uzuner K  Serteser M  Köken T  Aydin Y 《Peptides》2003,24(8):1181-1187
Leptin has cytoprotective effect to gastric mucosal injury in rats. We aimed to test the hypothesis that leptin induced histamine is involved in the prevention of ischemia-reperfusion (I/R) induced gastric mucosal injury in rats. At the end of the 30 min celiac artery occlusion and 12h reperfusion process, serum and gastric tissue samples were taken from three group of rats to measure oxidative status, histamine levels and for histological examinations. Leptin decreased ulcer and polymorphonuclear leukocyte (PMNL) index, and serum malondialdehyde (MDA) and protein carbonyl content but increased gastric tissue histamine levels. We concluded that leptin exerts a protective effect on gastric mucosa to I/R induced gastric injury probably through increasing tissue histamine content which, in turn, maintain the gastric mucosal blood flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号