首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The p38 members of the mitogen-activated protein kinase (MAPK) superfamily are activated by both environmental stress and endogenous signals, and may have either permissive or inhibitory roles upon both cell proliferation and cell death in the retina. We have previously shown that anisomycin, a protein synthesis inhibitor, and 2-aminopurine, a specific inhibitor of the double stranded-RNA dependent protein kinase, block apoptosis of ganglion cells induced by axotomy, and induce apoptosis of cells in the neuroblastic layer in developing rat retina. Using a specific inhibitor, we found that p38-stress activated MAP kinase is required for the death of post-mitotic cells induced by anisomycin, but not for the death of proliferating cells induced by 2-aminopurine, nor of axon-damaged retinal ganglion cells. We also show that p38 activation occurs either upstream of or parallel to the requirement for cyclic AMP to block apoptosis of post-mitotic cells, since the cyclic AMP-producing agent forskolin did not prevent p38 phosphorylation induced by anisomycin. Finally, the lack of immunostaining for phospho-p38 in apoptotic profiles suggests that p38 activation does not kill retinal cells directly, but more likely through the mediation of neighboring cells.  相似文献   

2.
3.
The lens influences retinal growth and differentiation during vertebrate eye development but the mechanisms are not understood. The role of the lens in retinal growth and development was studied in the teleost Astyanax mexicanus, which has eyed surface-dwelling (surface fish) and blind cave-dwelling (cavefish) forms. A lens and laminated retina initially develop in cavefish embryos, but the lens dies by apoptosis. The cavefish retina is subsequently disorganized, apoptotic cells appear, the photoreceptor layer degenerates, and retinal growth is arrested. We show here by PCNA, BrdU, and TUNEL labeling that cell proliferation continues in the adult cavefish retina but the newly born cells are removed by apoptosis. Surface fish to cavefish lens transplantation, which restores retinal growth and rod cell differentiation, abolished apoptosis in the retina but not in the RPE. Surface fish lens deletion did not cause apoptosis in the surface fish retina or affect RPE differentiation. Neither lens transplantation in cavefish nor lens deletion in surface fish affected retinal cell proliferation. We conclude that the lens acts in concert with another optic component, possibly the RPE, to promote retinal cell survival. Accordingly, deficiency in both optic structures may lead to eye degeneration in cavefish.  相似文献   

4.
Dlx homeobox genes, the vertebrate homologs of Distal-less, play important roles in the development of the vertebrate forebrain, craniofacial structures and limbs. Members of the Dlx gene family are also expressed in retinal ganglion cells (RGC), amacrine and horizontal cells of the developing and postnatal retina. Expression begins at embryonic day 12.5 and is maintained until late embryogenesis for Dlx1, while Dlx2 expression extends to adulthood. We have assessed the retinal phenotype of the Dlx1/Dlx2 double knockout mouse, which dies at birth. The Dlx1/2 null retina displays a reduced ganglion cell layer (GCL), with loss of differentiated RGCs due to increased apoptosis, and corresponding thinning of the optic nerve. Ectopic expression of Crx, the cone and rod photoreceptor homeobox gene, in the GCL and neuroblastic layers of the mutants may signify altered cell fate of uncommitted RGC progenitors. However, amacrine and horizontal cell differentiation is relatively unaffected in the Dlx1/2 null retina. Herein, we propose a model whereby early-born RGCs are Dlx1 and Dlx2 independent, but Dlx function is necessary for terminal differentiation of late-born RGC progenitors.  相似文献   

5.
1. We investigated the association of c-Jun with apoptosis within retinal tissue. Explants of the retina of neonatal rats were subject to a variety of procedures that cause apoptosis of specific classes of retinal cells at distinct stages of differentiation. The expression of c-Jun was detected by Western Blot, and immunohistochemistry was done with antibodies made for either N-terminal or C-terminal domains of c-Jun, and correlated with apoptosis detected either by chromatin condensation or by in situ nick end labeling of fragmented DNA.2. c-Jun protein content was increased in retinal tissue subject to induction of both photoreceptor and ganglion cell death.3. c-Jun N-terminal immunoreactivity was found mainly in the cytoplasm of apoptotic cells regardless of cell type, of the stage of differentiation, including proliferating cells, or of the means of induction of apoptosis.4. The data are consistent with the hypothesis that c-Jun is involved in the control of cell death in retinal tissue, but other proteins that cross-react with c-Jun N-terminal antibodies may also be major markers of retinal apoptosis.5. Antibodies directed to c-Jun N-terminal (aa 91-105) are useful tools to follow apoptotic changes in retinal tissue.  相似文献   

6.
The cyclin-dependent kinase inhibitor protein, p27(Kip1), is necessary for the timing of cell cycle withdrawal that precedes terminal differentiation in oligodendrocytes of the optic nerve. Although p27(Kip1) is widely expressed in the developing central nervous system, it is not known whether this protein has a similar role in neuronal differentiation. To address this issue, we have examined the expression and function of p27(Kip1) in the developing retina, a well-characterized part of the central nervous system. p27(Kip1) is expressed in a pattern coincident with the onset of differentiation of most retinal cell types. In vitro analyses show that p27(Kip1) accumulation in retinal cells correlates with cell cycle withdrawal and differentiation, and when overexpressed, p27(Kip1) inhibits proliferation of the progenitor cells. Furthermore, the histogenesis of photoreceptors and Müller glia is extended in the retina of p27(Kip1)-deficient mice. Finally, we examined the adult retinal dysplasia in p27(Kip1)-deficient mice with cell-type-specific markers. Contrary to previous suggestions that the dysplasia is caused by excess production of photoreceptors, we suggest that the dysplasia is due to the displacement of reactive Müller glia into the layer of photoreceptor outer segments. These results demonstrate that p27(Kip1) is part of the molecular mechanism that controls the decision of multipotent central nervous system progenitors to withdraw from the cell cycle. Second, postmitotic Müller glia have a novel and intrinsic requirement for p27(Kip1) in maintaining their differentiated state.  相似文献   

7.
8.
The formation of laminae within the retina requires the coordinate regulation of cell differentiation and migration. The cell adhesion molecule and member of the immunoglobulin superfamily, receptor protein tyrosine phosphatase Mu, PTPmu, is expressed in precursor and early, differentiated cells of the prelaminated retina, and later becomes restricted to the inner plexiform, ganglion cell, and optic fiber layers. Since the timing of PTPmu expression correlates with the peak period of retinal lamination, we examined whether this RPTP could be regulating cell adhesion and migration within the retina, and thus influencing retinal development. Chick retinal organ cultures were infected with herpes simplex viruses encoding either an antisense sequence to PTPmu, wild-type PTPmu, or a catalytically inactive mutant form of PTPmu, and homophilic adhesion was blocked by using a function-blocking antibody. All conditions that perturbed PTPmu dramatically disrupted retinal histogenesis. Our findings demonstrate that catalytic activity and adhesion mediated by PTPmu regulate lamination of the retina, emphasizing the importance of adhesion and signaling via receptor protein tyrosine phosphatases in the developing nervous system. To our knowledge, this is the first demonstration that an Ig superfamily RPTP regulates the lamination of any neural tissue.  相似文献   

9.
Alternative splicing is the primary mechanism by which a limited number of protein-coding genes can generate proteome diversity. We have investigated the role of the alternative-splicing factor Sfrs1, an arginine/serine-rich (SR) protein family member, during mouse retinal development. Loss of Sfrs1 function during embryonic retinal development had a profound effect, leading to a small retina at birth. In addition, the retina underwent further degeneration in the postnatal period. Loss of Sfrs1 function resulted in the death of retinal neurons that were born during early to mid-embryonic development. Ganglion cells, cone photoreceptors, horizontal cells and amacrine cells were produced and initiated differentiation. However, these neurons subsequently underwent cell death through apoptosis. By contrast, Sfrs1 was not required for the survival of the neurons generated later, including later-born amacrine cells, rod photoreceptors, bipolar cells and Müller glia. Our results highlight the requirement of Sfrs1-mediated alternative splicing for the survival of retinal neurons, with sensitivity defined by the window of time in which the neuron was generated.  相似文献   

10.
Gap junction channels formed by connexins (Cx) may play essential roles in some processes that occur during retinal development, such as apoptosis and calcium wave spread. The present study was undertaken to determine the distribution pattern of Cx36, Cx43, and Cx45 by immunofluorescence, as well as their gene expression levels by quantitative PCR during postnatal development of the mouse retina. Our results showed an increased expression of neuronal Cx36 from P1 until P10, when this Cx reached adult levels, and it was mainly distributed in the outer and inner plexiform layers. In turn, Cx43 was almost absent in retinal progenitor cells at P1, it became more prominent in glial cell processes about P10, and did not change until adulthood. Double-labeling studies in situ and in vitro with antivimentin, a Müller cell marker, confirmed that Cx43 was expressed by these cells. In addition, quantitative PCR showed that Cx43 and vimentin shared very similar temporal expression patterns. Finally, in contrast to Cx36 and Cx43, Cx45 mRNA was strongly down-regulated during development. In early postnatal days, Cx45 was seen ubiquitously distributed throughout the retina in cells undergoing proliferation and differentiation, as well in differentiated neurons. In adult retina, this protein had a more restricted distribution both in neurons and glial cells, as confirmed in situ and in vitro. In conclusion, we observed a distinct temporal expression pattern for Cx36, Cx43, and Cx45, which is probably related to particular roles in retinal function and maintenance of homeostasis during development of the mouse retina.  相似文献   

11.
The phosphoinositide-3-kinase (PI3K)/protein kinase B (PKB)/Bad signal transduction pathway is engaged in the control of apoptosis in many different cell types, particularly through phosphorylation of the Bcl-2 family protein Bad. We examined the involvement of this pathway in the control of programmed cell death in the retina of developing rats. PKB is constitutively phosphorylated in retinal tissue in vitro, whereas Bad was dephosphorylated both in Ser112 and Ser136. Cell death induced by either the PI3K inhibitor LY294002, or the general kinase inhibitor 2-aminopurine, were followed by PKB dephosphorylation, but PKB was not modulated during cell death induced by the protein synthesis inhibitor anisomycin. Treatment of retinal tissue cultures with forskolin, which increases intracellular levels of cAMP, partially blocked apoptosis induced by both anisomycin and 2-aminopurine, but not by LY294002, whereas forskolin invariably induced phosphorylation of Bad on both Ser112 and Ser136. The data suggest that Bad may be engaged in survival pathways in the immature retina, but pathways other than PI3K/PKB/Bad, and phosphorylation sites other than Ser112 and Ser136 in the Bad protein control cell survival in retinal tissue.  相似文献   

12.
Degeneration of neural retina causes vision impairment and can lead to blindness. Neural stem and progenitor cells might be used as a tool directed to regenerative medicine of the retina. Here, we describe a novel platform for cell phenotype-specific drug discovery and screening of proneurogenic factors, able to boost differentiation of neural retinal progenitor cells. By using single cell calcium imaging (SCCI) and a rational-based stimulation protocol, a diversity of cells emerging from differentiated retinal neurosphere cultures were identified. Exposure of retinal progenitor cultures to KCl or to α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) stimulated Ca2+ transients in microtubule-associated protein 2 (MAP-2) positive neurons. Doublecortin (DCX) and polysialated neural cell adhesion molecule (PSA-NCAM) positive neuroblasts were distinguished from differentiated neurons on the basis of their response to muscimol. Ca2+ fluxes in glial fibrillary acidic protein (GFAP) or glutamine synthetase (GS) positive cells were induced by ATP. To validate the platform, neurospheres were treated with brain-derived neurotrophic factor (BDNF) (proneurogenic) or ciliary neurotrophic factor (CNTF) (gliogenic factor). BDNF increased the percentage of differentiated cells expressing Tuj-1 sensitive to KCl or AMPA and reduced the population of cells responding to muscimol. CNTF exposure resulted in a higher number of cells expressing GFAP responding to ATP. All together, our data may open new perspectives for cell type-specific discovery of drug targets and screening of novel proneurogenic factors to boost differentiation of neural retina cells to treat degenerative retinal diseases.  相似文献   

13.
In the developing retina, neurogenesis and cell differentiation are coupled with cell proliferation. However, molecular mechanisms that coordinate cell proliferation and differentiation are not fully understood. In this study, we found that retinal neurogenesis is severely delayed in the zebrafish stem-loop binding protein (slbp) mutant. SLBP binds to a stem-loop structure at the 3′-end of histone mRNAs, and regulates a replication-dependent synthesis and degradation of histone proteins. Retinal cell proliferation becomes slower in the slbp1 mutant, resulting in cessation of retinal stem cell proliferation. Although retinal stem cells cease proliferation by 2 days postfertilization (dpf) in the slbp mutant, retinal progenitor cells in the central retina continue to proliferate and generate neurons until at least 5 dpf. We found that this progenitor proliferation depends on Notch signaling, suggesting that Notch signaling maintains retinal progenitor proliferation when faced with reduced SLBP activity. Thus, SLBP is required for retinal stem cell maintenance. SLBP and Notch signaling are required for retinal progenitor cell proliferation and subsequent neurogenesis. We also show that SLBP1 is required for intraretinal axon pathfinding, probably through morphogenesis of the optic stalk, which expresses attractant cues. Taken together, these data indicate important roles of SLBP in retinal development.  相似文献   

14.
pp60c-src is developmentally regulated in the neural retina   总被引:60,自引:0,他引:60  
L K Sorge  B T Levy  P F Maness 《Cell》1984,36(2):249-257
We have localized normal cellular pp60c-src in the developing chick neural retina by immunocytochemical staining using antisera raised against bacterially expressed pp60v-src, the src gene product of Rous sarcoma virus. pp60c-src was expressed in developing retinal neurons at the onset of differentiation. Expression of pp60c-src persisted in mature neuronal cells that were postmitotic, fully differentiated, and functional. pp60c-src immunoreactivity was localized within processes and cell bodies of ganglion neurons, processes of rods and cones, and in some but not all neurons of the inner nuclear layer. Protein kinase assays and Western transfer analyses identified the immunoreactive protein as pp60c-src, and confirmed that its expression occurs at the time the first neuronal cells in the retina differentiate. We conclude from these studies that pp60c-src is the product of a developmentally regulated gene that is more important in neuronal differentiation or function than cell proliferation.  相似文献   

15.
Hop/STI1 modulates retinal proliferation and cell death independent of PrPC   总被引:2,自引:0,他引:2  
Hop/STI1 is a co-chaperone adaptor protein for Hsp70/Hsp90 complexes. Hop/STI1 is found extracellularly and modulates cell death and differentiation through interaction with the prion protein (PrP(C)). Here, we investigated the expression of hop/STI1 and its role upon cell proliferation and cell death in the developing retina. Hop/STI1 is more expressed in developing rat retina than in the mature tissue. Hop/STI1 blocks retinal cell death in the neuroblastic layer (NBL) in a PrP(C) dependent manner, but failed to protect ganglion cells against axotomy-induced cell death. An antibody raised against hop/STI1 (alpha-STI1) blocked both ganglion cell and NBL cell death independent of PrP(C). cAMP/PKA, ERK, PI3K and PKC signaling pathways were not involved in these effects. Hop/STI1 treatment reduced proliferation, while alpha-STI1 increased proliferation in the developing retina, both independent of PrP(C). We conclude that hop/STI1 can modulate both proliferation and cell death in the developing retina independent of PrP(C).  相似文献   

16.
Neurons in both vertebrate and invertebrate eyes are organized in regular arrays. Although much is known about the mechanisms involved in the formation of the regular arrays of neurons found in invertebrate eyes, much less is known about the mechanisms of formation of neuronal mosaics in the vertebrate eye. The purpose of these studies was to determine the cellular mechanisms that pattern the first neurons in vertebrate retina, the retinal ganglion cells. We have found that the ganglion cells in the chick retina develop as a patterned array that spreads from the central to peripheral retina as a wave front of differentiation. The onset of ganglion cell differentiation keeps pace with overall retinal growth; however, there is no clear cell cycle synchronization at the front of differentiation of the first ganglion cells. The differentiation of ganglion cells is not dependent on signals from previously formed ganglion cells, since isolation of the peripheral retina by as much as 400 microm from the front of ganglion cell differentiation does not prevent new ganglion cells from developing. Consistent with previous studies, blocking FGF receptor activation with a specific inhibitor to the FGFRs retards the movement of the front of ganglion cell differentiation, while application of exogenous FGF1 causes the precocious development of ganglion cells in peripheral retina. Our observations, taken together with those of previous studies, support a role for FGFs and FGF receptor activation in the initial development of retinal ganglion cells from the undifferentiated neuroepithelium peripheral to the expanding wave front of differentiation.  相似文献   

17.

Background

Adult mesenchymal stem cells (MSCs) can be maintained over extended periods of time before activation and differentiation. Little is known about the programs that sustain the survival of these cells.

Principal Findings

Undifferentiated adult human MSCs (hMSCs) did not undergo apoptosis in response to different cell death inducers. Conversely, the same inducers can readily induce apoptosis when hMSCs are engaged in the early stages of differentiation. The survival of undifferentiated cells is linked to the expression of Bcl-Xl and Bcl-2 in completely opposite ways. Bcl-Xl is expressed at similar levels in undifferentiated and differentiated hMSCs while Bcl-2 is expressed only in differentiated cells. In undifferentiated hMSCs, the down-regulation of Bcl-Xl is associated with an increased sensitivity to apoptosis while the ectopic expression of Bcl-2 induced apoptosis. This apoptosis is linked to the presence of cytoplasmic Nur 77 in undifferentiated hMSCs.

Significance

In hMSCs, the expression of Bcl-2 depends on cellular differentiation and can be either pro- or anti-apoptotic. Bcl-Xl, on the other hand, exhibits an anti-apoptotic activity under all conditions.  相似文献   

18.
Mouse embryonic stem (ES) cells remain pluripotent in vitro when grown in the presence of leukemia inhibitory factor (LIF). LIF starvation leads to apoptosis of some of the ES-derived differentiated cells, together with p38alpha mitogen-activated protein kinase (MAPK) activation. Apoptosis, but not morphological cell differentiation, is blocked by a p38 inhibitor, PD169316. To further understand the mechanism of action of this compound, we have identified its specific targets by microarray studies. We report on the global expression profiles of genes expressed at 3 days upon LIF withdrawal (d3) compared to pluripotent cells and of genes whose expression is modulated at d3 under anti-apoptotic conditions. We showed that at d3 without LIF cells express, earlier than anticipated, specialized cell markers and that when the apoptotic process was impaired, expression of differentiation markers was altered. In addition, functional tests revealed properties of anti-apoptotic proteins not to alter cell pluripotency and a novel role for metallothionein 1 gene, which prevents apoptosis of early differentiated cells.  相似文献   

19.
Although RB1 function is disrupted in the majority of human cancers, an undefined cell of developing human retina is uniquely sensitive to cancer induction when the RB1 tumor suppressor gene is lost. Murine retinoblastoma is initiated only when two of the RB family of genes, RB1 and p107 or p130, are inactivated. Although whole embryonic retina shows RB family gene expression by several techniques, when E14 developing retina was depleted of the earliest differentiating cells, ganglion cells, the remaining proliferating murine embryonic retinal progenitor cells clearly did not express RB1 or p130, while the longer splice form of p107 was expressed. Each retinal cell type expressed some member of the RB family at some stage of differentiation. Rod photoreceptors stained for the RB1 protein product, pRB, and p107 in only a brief window of postnatal murine development, with no detectable staining for any of the RB family proteins in adult human and mouse rod photoreceptors. Adult mouse and human Muller glia, ganglion and rare horizontal cells, and adult human, but not adult mouse, cone photoreceptors stained for pRB. The RB gene family is dynamically and variably expressed through retinal development in specific retinal cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号