首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《Cytokine》2014,65(2):175-183
Aneuploidy, a condition associated with altered chromosome number, hence DNA index, is frequently seen in many diseases including cancers and affects immunity. Iron, an essential nutrient for humans, modulates the immune function and the proliferation of normal and cancer cells. To determine whether impaired immunity seen in iron-deficient subjects may be related to aneuploidy, we measured spleen cell DNA index, percent of cells in different phases of the cell cycle, plasma and/or supernatant IL-2, IL-10, IL-12, and interferon-gamma in control, pair-fed, iron-deficient, and iron-replete mice (N = 20–22/group). The test and control diets differed only in iron content (0.09 mmol/kg versus 0.9 mmol/kg) and were fed for 68 days. Mean levels of hemoglobin and liver iron stores of iron-deficient and iron-replete mice were 40–60% lower than those of control and pair-fed mice (P < 0.05). Mean plasma levels of IL-10, interferon-gamma and percent of cells in S + G2/M phases were lower in mice with than in those without aneuploidy (P < 0.05). Lowest plasma IL-12 and interferon-gamma concentrations were observed in iron-deficient mice with aneuploidy. Mean percents of cultures with aneuploidy and DNA indexes were higher in iron-deficient and iron-replete than in control and pair-fed mice likely due to delayed cell division (P < 0.05). Aneuploidy decreased the concentration of IL-2 and interferon-gamma in baseline cultures while it increased that of interferon-gamma in anti-CD3 treated cultures. Aneuploidic indexes negatively correlated with cytokine levels, percents of cells in S + G2/M phases and indicators of iron status (P < 0.05). Although chromosome cytogenetics was not performed, for the first time, we report that increased aneuploidy rate may modulate the immune function during iron-deficiency.  相似文献   

2.
Superoxide radicals and phagocytosis   总被引:15,自引:0,他引:15  
Escherichia coli B, grown in iron-rich media, were more resistant toward the aerobic bactericidal action of the formed elements of blood than were comparable iron-deficient cells. The iron replete cells contained 2.5 times more ferrisuperoxide dismutase, 12 times more peroxidase, and 1.5 times more catalase than did the iron-deficient cells. The iron-deficient cells were more susceptible to exogenous O2? and to H2O2 than were iron-replete cells. Cyanide permitted a differentiation between ferrisuperoxide dismutase and catalase or peroxidase since it inhibited the latter peroxide-consuming enzymes but had no effect on the superoxide-utilizing enzyme. In the presence of 2 mm cyanide, the iron-replete E. coli were much more resistant toward phagocytic kill than were the iron-deficient cells even though this level of cyanide completely inhibited catalase and peroxidase. It can be concluded that a large part of the enhanced resistance toward phagocytic kill, exhibited by iron-replete E. coli B, was due to their increased content of the periplasmic ferrisuperoxide dismutase. It follows that O2? is probably an important agent in the killing of phagocytized E. coli B.  相似文献   

3.
BACKGROUND: Helicobacter pylori, which requires iron to survive, may cause host iron deficiency by directly competing with the host for available iron or by impairing iron uptake as a consequence of atrophy-associated gastric hypochlorhydria. The aim of this study was to examine the effect of H. pylori infection and dietary iron deficiency on host iron homeostasis in a mouse model. MATERIALS AND METHODS: H. pylori SS1-infected and uninfected C57BL/6 mice, fed either a normal diet or an iron-deficient diet, were assessed for iron status and infection-associated gastritis over a 30-week period. RESULTS: After 10 weeks, serum ferritin values were higher in H. pylori-infected mice than in uninfected controls, irrespective of dietary iron intake (p = .04). The infection-related increase in body iron stores persisted in the iron-replete mice but diminished over time in mice with restricted dietary iron intake (p < .0001). At 30 weeks serum ferritin levels were lower in these animals (p = .063). No significant difference in bacterial numbers was detected at the 30-week time point (p > .05) and the histological changes observed were consistently associated with infection (p < .01) and not with the iron status of the mice (p = .771). CONCLUSIONS: Infection with H. pylori did not cause iron deficiency in iron-replete mice. However, diminished iron stores in mice as a result of limited dietary iron intake were further lowered by concurrent infection, thus indicating that H. pylori competes successfully with the host for available iron.  相似文献   

4.
The bioavailable iron in many aquatic ecosystems is extremely low, and limits the growth and photosynthetic activity of phytoplankton. In response to iron limitation, a group of chlorophyll-binding proteins known as iron stress-induced proteins are induced and serve as accessory light-harvesting components for photosystems under iron limitation. In the present study, we investigated physiological features of Acaryochloris marina in response to iron-deficient conditions. The growth doubling time under iron-deficient conditions was prolonged to ~3.4 days compared with 1.9 days under normal culture conditions, accompanied with dramatically decreased chlorophyll content. The isolation of chlorophyll-binding protein complexes using sucrose density gradient centrifugation shows six main green bands and three main fluorescence components of 712, 728, and 748 nm from the iron-deficient culture. The fluorescence components of 712 and 728 nm co-exist in the samples collected from iron-deficient and iron-replete cultures and are attributed to Chl d-binding accessory chlorophyll-binding antenna proteins and also from photosystem II. A new chlorophyll-binding protein complex with its main fluorescence peak at 748 nm was observed and enriched in the heaviest fraction from the samples collected from the iron-deficient culture only. Combining western blotting analysis using antibodies of CP47 (PSII), PsaC (PSI) and IsiA and proteomic analysis on an excised protein band at ~37 kDa, the heaviest fraction (?F6) isolated from iron-deficient culture contained Chl d-bound PSI–IsiA supercomplexes. The PSII-antenna supercomplexes isolated from iron-replete conditions showed two fluorescence peaks of 712 and 728 nm, which can be assigned as 6-transmembrane helix chlorophyll-binding antenna and photosystem II fluorescence, respectively, which is supported by protein analysis of the fractions (F5 and F6).  相似文献   

5.
2 novel methods of coprophagy prevention were used in iron-deficient rats to measure their effect on haemoglobin regeneration during the feeding of ferrous sulphate or several soya proteins. Neck collars produced considerable weight loss and depression in food intake compared to aluminium anal cups which were tolerated well. Both methods of coprophagy prevention reduced iron availability from a range of soya proteins and ferrous sulphate and it is suggested that the practice of coprophagy in iron-deficient and possibly iron-replete rats may overestimate iron (and possibly other mineral) absorption (retention) studies.  相似文献   

6.
Iron is an essential nutrient. Its deficiency hinders the synthesis of ATP and DNA. We report that galactose metabolism is defective when iron availability is restricted. Our data support this connection because 1) galactose-mediated induction of GAL promoter-dependent gene expression was diminished by iron limitation, and 2) iron-deficient mutants grew slowly on galactose-containing medium. These two defects were immediately corrected by iron replacement. Inherited defects in human galactose metabolism are characteristic of the disease called galactosemia. Our findings suggest that iron-deficient galactosemic individuals might be more severely compromised than iron-replete individuals. This work shows that iron homeostasis and galactose metabolism are linked with one another.  相似文献   

7.
The effects of sub-MICs of ciprofloxacin and tobramycin on the cell surface characteristics and extracellular virulence factors of Pseudomonas cepacia were evaluated. Cells were grown in batch culture under iron-deficient and iron-replete conditions. At sub-MIC levels that did not affect bacterial growth cell surface hydrophobicity decreased under both iron-replete and iron-depleted conditions with ciprofloxacin, but increased with tobramycin under iron-sufficient conditions. Exopolysaccharide synthesis, lipase production and siderophore production were all significantly increased by the presence of ciprofloxacin under both growth conditions. Outer membrane protein and lipopolysaccharide profiles were not affected by exposure to the two antibiotics.  相似文献   

8.
When the abundance of the FOX1 gene product is reduced, Chlamydomonas cells grow poorly in iron-deficient medium, but not in iron-replete medium, suggesting that FOX1-dependent iron uptake is a high-affinity pathway. Alternative pathways for iron assimilation, such as those involving ZIP family transporters IRT1 and IRT2, may be operational.  相似文献   

9.
Normal and iron-deficient rats were exposed to cold at 4 degrees C for 1 hr or 5 hrs and the serum TSH, T3 and T4 levels were compared with those in rats kept at room temperature (20 degrees C). There was a rise in serum TSH, T3 and T4 levels in response to 1 hr and 5 hrs of cold exposure in normal, but not in iron-deficient rats. Although pituitary TSH contents were lower in iron-deficient rats, the increases in serum levels of TSH following administration of TRH were similar in both normal and iron-deficient rats. The results suggest that the inability to respond to cold in iron-deficient rats may be due to a reduction in the release of TRH from the hypothalamus.  相似文献   

10.
X. Hu  G. L. Boyer 《Applied microbiology》1996,62(11):4044-4048
The bacterium Bacillus megaterium ATCC 19213 is known to produce two hydroxamate siderophores, schizokinen and N-deoxyschizokinen, under iron-limited conditions. In addition to their high affinity for ferric ions, these siderophores chelate aluminum. Aluminum was absorbed by B. megaterium ATCC 19213 through the siderophore transport receptor, providing an extra pathway for aluminum accumulation into iron-deficient bacteria. At low concentrations of the metal, siderophore-mediated uptake was the dominant process for aluminum accumulation. At high concentrations of aluminum, passive transport dominated and siderophore production slowed the passive transport of aluminum into the cell. Siderophore production was affected by the aluminum content in the media. High concentrations of aluminum increased production of siderophores in iron-limited cultures, and this production continued into stationary phase. Aluminum did not stimulate siderophore production in iron-replete cultures. The production of siderophores markedly affected aluminum uptake. This has direct implications on the toxicity of heavy metals under iron-deficient conditions.  相似文献   

11.
12.
Hepcidin is an anti-microbial peptide predicted to be involved in the regulation of intestinal iron absorption. We have examined the relationship between the expression of hepcidin in the liver and the expression of the iron-transport molecules divalent-metal transporter 1, duodenal cytochrome b, hephaestin and Ireg1 in the duodenum of rats switched from an iron-replete to an iron-deficient diet or treated to induce an acute phase response. In each case, elevated hepcidin expression correlated with reduced iron absorption and depressed levels of iron-transport molecules. These data are consistent with hepcidin playing a role as a negative regulator of intestinal iron absorption.  相似文献   

13.
Helicobacter pylori (Hp) injects the CagA effector protein into host epithelial cells and induces growth factor-like signaling, perturbs cell-cell junctions, and alters host cell polarity. This enables Hp to grow as microcolonies adhered to the host cell surface even in conditions that do not support growth of free-swimming bacteria. We hypothesized that CagA alters host cell physiology to allow Hp to obtain specific nutrients from or across the epithelial barrier. Using a polarized epithelium model system, we find that isogenic ΔcagA mutants are defective in cell surface microcolony formation, but exogenous addition of iron to the apical medium partially rescues this defect, suggesting that one of CagA's effects on host cells is to facilitate iron acquisition from the host. Hp adhered to the apical epithelial surface increase basolateral uptake of transferrin and induce its transcytosis in a CagA-dependent manner. Both CagA and VacA contribute to the perturbation of transferrin recycling, since VacA is involved in apical mislocalization of the transferrin receptor to sites of bacterial attachment. To determine if the transferrin recycling pathway is involved in Hp colonization of the cell surface, we silenced transferrin receptor expression during infection. This resulted in a reduced ability of Hp to colonize the polarized epithelium. To test whether CagA is important in promoting iron acquisition in vivo, we compared colonization of Hp in iron-replete vs. iron-deficient Mongolian gerbils. While wild type Hp and ΔcagA mutants colonized iron-replete gerbils at similar levels, ΔcagA mutants are markedly impaired in colonizing iron-deficient gerbils. Our study indicates that CagA and VacA act in concert to usurp the polarized process of host cell iron uptake, allowing Hp to use the cell surface as a replicative niche.  相似文献   

14.
Histoplasma capsulatum is a dimorphic fungal pathogen that survives and replicates within macrophages (Mphi). To identify specific genes required for intracellular survival, we utilized Agrobacterium tumefaciens-mediated mutagenesis, and screened for H. capsulatum insertional mutants that were unable to survive in human Mphi. One colony was identified that had an insertion within VMA1, the catalytic subunit A of the vacuolar ATPase (V-ATPase). The vma1 mutant (vma1::HPH) grew normally on iron-replete medium, but not on iron-deficient media. On iron-deficient medium, the growth of the vma1 mutant was restored in the presence of wild-type (WT) H. capsulatum yeasts, or the hydroxamate siderophore, rhodotorulic acid. However, the inability to replicate within Mphi was only partially restored by the addition of exogenous iron. The vma1::HPH mutant also did not grow as a mold at 28 degrees C. Complementation of the mutant (vma/VMA1) restored its ability to replicate in Mphi, grow on iron-poor medium and grow as a mold at 28 degrees C. The vma1::HPH mutant was avirulent in a mouse model of histoplasmosis, whereas the vma1/VMA1 strain was as pathogenic as WT yeasts. These studies demonstrate the importance of V-ATPase function in the pathogenicity of H. capsulatum, in iron homeostasis and in fungal dimorphism.  相似文献   

15.
In a time-distribution study, the anticonvulsant effects of four benzodiazepine compounds were compared with those of three standard antiepileptics against metrazol-induced seizures in mice and rats. Ethosuximide and trimethadione had the shortest duration of action in mice, but protected the rats up to 6 hr. Phenobarbitone, diazepam, flurazepam and nitrazepam protected the mice up to 12 hr, but the rats were effectively protected only up to 3-4 hr. Clonazepam, the most potent and effective agent, protected the mice from clonic-tonic seizures up to 18-20 hr and the rats up to 6-7 hr. Comparison of the PD50 from clonic seizure at the peak-effect hours revealed that the benzodiazepines were 16 to 96 times more potent than phenobarbitone on a molar basis, while phenobarbitone itself was 12 to 26 times more potent than ethosuximide and trimethadione. Tonic seizures and mortality were largely suppressed by all drugs until 18-20 hr in mice and 6-7 hr in rats. Seizure latency and mortality patterns varied from drug to drug but not in a dose-dependent manner.  相似文献   

16.
Abstract The plasmid pMS101 carries Escherichia coli K-12 genes ( entD, fes, entF ) essential for enterochelin-mediated iron transport [Laird, A.J. and Young, I.G., Gene 11 (1980) 359–366]. We have further characterized pMS101 and shown that it also contains the gene ( fepA ) for the 81 000 Da outer membrane ferrienterochelin receptor. Subcloning experiments in conjunction with complementation and maxicell studies demonstrated the gene order to be entD fepA fes entF . The entF - and fes -encoded polypeptides were found to be 115 000 and 42 000-Da soluble proteins, respectively. Plasmid-borne enterochelin cluster genes were overexpressed in iron-deficient conditions and their products were undetectable under iron-replete conditions.  相似文献   

17.
Iron status, immune capacity and resistance to infections   总被引:1,自引:0,他引:1  
1. The importance of iron on immune functions is reviewed. 2. The consequences of iron deficiency upon resistance to infection in men (adults and children) and animals are controversial. 3. Cellular immunity is often altered in iron-deficient humans and in murine species. 4. Humoral immune responses seem far less affected in iron-deficient humans than is cellular immunity, but is impaired in iron-deficient animals. Results on complement are scarce and controversial. 5. There is almost no perturbation of phagocytosis but bactericidal activity is decreased in most studies on iron-deficient subjects. 6. Natural Killer activity is decreased in iron-deficient mice. Iron deficiency also affects lymphokine production in mice and rats.  相似文献   

18.
19.
The candidacidal activity (CA) of peritoneal cells (PC) in vitro was used as a measure of nonspecific microbicidal activity of phagocytes after intraperitoneal injection of mice with different adjuvants. Dilutions of PC were incubated with constant numbers of C. parapsilosis in a 96-well culture plate. The PC number causing 50% reduction of yeast colonies formed after 48 hr at 37 degrees C was called 1 CA50 unit. CA was expressed in CA50 units per 10(6) PC. Optimal reduction of the number of viable candida cells in vitro was established within 1.5 hr while 50% reduction was reached after 0.5 hr. In this test CA was, within limits, independent of the number of viable candida cells added per well (22 to 152 yeast cells), of the concentration of fetal calf serum (1-20%) and of the presence of heat-labile serum components. The CA of PC of individual mice was measured 6, 24, and 96 hr after injection of an adjuvant. In most instances optimal CA was observed 6 hr after administration of adjuvant and varied from 3.7 (methylamine) to 50 (Corynebacterium parvum strain 4982) units. With respect to the titer and duration of CA, the adjuvants were arranged in the following order of increasing efficacy: methylamine, heparin, polyol L 121, suramin, dextran sulfate, polyol L 101, dimethyldioctadecylammonium bromide, Liquoid, heat-killed Listeria monocytogenes, formalin-killed C. parvum strain 10387, and strain 4982. The CA induced by the latter strain persisted at least till 96 hr after injection. The induction of CA was accompanied by recruitment of polymorphonuclear cells. The contribution of distinct phagocytic effector cells to CA and the correlation between modulation of the specific and nonspecific immunity are discussed.  相似文献   

20.
Iron regulatory protein 2 (IRP2) is a critical switch for cellular and systemic iron homeostasis. In iron-deficient or hypoxic cells, IRP2 binds to mRNAs containing iron responsive elements (IREs) and regulates their expression. Iron promotes proteasomal degradation of IRP2 via the F-box protein FBXL5. Here, we explored the effects of oxygen and cellular redox status on IRP2 stability. We show that iron-dependent decay of tetracycline-inducible IRP2 proceeds efficiently under mild hypoxic conditions (3% oxygen) but is compromised in severe hypoxia (0.1% oxygen). A treatment of cells with exogenous H(2)O(2) protects IRP2 against iron and increases its IRE-binding activity. IRP2 is also stabilized during menadione-induced oxidative stress. These data demonstrate that the degradation of IRP2 in iron-replete cells is not only oxygen-dependent but also sensitive to redox perturbations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号