首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Isolated hepatocyte preparations from fed immature American eels,Anguilla rostrata Le Sueur, were used to study gluconeogenic, lipogenic, glycogenic and oxidative rates of radioactively labelled lactate, glycerol, alanine and aspartate. Eel hepatocytes maintain membrane integrity and energy charge during a 2 h incubation period and are considered a viable preparation for studying fish liver metabolism.Incubating eel hepatocytes with 10 mM substrates, the following results were obtained: glycerol, alanine and lactate, in that order, were effective gluconeogenic substrates; these three substrates reduced glucose release from glycogen stores, while aspartate had no such effect; lactate, alanine and aspartate led to high rates of glycerol production, with subsequent incorporation into lipid; incorporation into glycogen was low from all substrates; and, alanine oxidation was seven times higher than that observed with other substrates.When eel hepatocytes were incubated with low or physiological substrate concentrations gluconeogenic rates from lactate were twice those from alanine; rates from aspartate were very low. Glucagon stimulated lactate gluconeogenesis, but not amino acid gluconeogenesis, and had no significant effect on glycogenolysis. Cortisol increased gluconeogenic rates from 1 mM lactate.Thus, in the presence of adequate substrate, eel liver gluconeogenesis is preferentially stimulated relative to glycogenolysis to produce plasma glucose. These data support three important roles for gluconeogenesis: the recycling of muscle lactate, the synthesis of glucose from dietary amino acids to supplement glucose levels, and the production of glycerol for lipogenesis.This work was supported from operating grants to TWM from the National Research Council of Canada (A6944)  相似文献   

2.
A rather complete model of the gluconeogenic pathway was used, with the known separate pools of mitochondrial and cytosolic oxalacetate, malate and aspartate. The fumarase, malate dehydrogenase and glutamate oxalacetate transaminase reactions were assumed to be isotopically actively reversible, but none at isotopic equilibrium. Malate was assumed to exchange actively between the mitochondrial and cytosol, while aspartate exchange was more limited, in agreement with the known electrogenic nature of aspartate export from the mitochondria. This model was fit to14C data obtained in hepatocyte studies, and to the whole rat14C data obtained by Heath and Rose (Biochem J. 227, 851–876, 1985). The latter data were easily fit to our model, when a single mitochondrial oxalacetate pool was assumed. However, invoking two mitochondrial oxalacetate pools, as proposed by Heath and Rose, with the oxalacetate formed via pyruvate carboxylase preferentially channelled to gluconeogenesis, could not be fit with the known differences in scrambling in glucose and glutamate produced from L[3-14C]lactate.  相似文献   

3.
Pyruvate metabolism in Helicobacter pylori   总被引:1,自引:0,他引:1  
The metabolism of pyruvate by Helicobacter pylori was investigated employing one- and two-dimensional 1H and 13C nuclear magnetic resonance spectroscopy. Generation of pyruvate from l-serine in incubations with whole cell lysates indicated the presence of serine dehydratase activity in the bacterium. Pyruvate was formed also in cell suspensions and lysates from phosphoenol pyruvate. Metabolically competent cells incubated aerobically with pyruvate yielded alanine, lactate, acetate, formate, and succinate. The production of alanine and lactate indicated the presence of alanine transaminase and lactate dehydrogenase activities, respectively. Accumulation of acetate and formate as metabolic products provided evidence for the existence of a mixed-acid fermentation pathway in the microorganism. Formation of succinate suggested the incorporation of the pyruvate carbon skeleton into the Kreb's cycle. Addition of pyruvate to various liquid culture media did not affect bacterial growth or loss of viability. The variety of products formed using pyruvate as the sole substrate showed the important role of this metabolite in the energy metabolism of H. pylori.  相似文献   

4.
The use of n-butylmalonate as an inhibitor of malate transport from mitochondria and of aminooxyacetate as an inhibitor of glutamate-aspartate transaminase indicated that rat liver hepatocytes employ the aspartate shuttle for gluconeogenesis from lactate which supplies reducing equivalents to the cytosolic NAD system. In contrast, malate is transported from mitochondria to cytosol for gluconeogenesis from pyruvate. This conclusion is corroborated by the finding that the addition of ammonium ions enhances gluconeogenesis from lactate but inhibits glucose formation from pyruvate. In hepatocytes, glucagon and epinephrine have relatively little effect on glucose synthesis from lactate. Ammonium ions permit both of these hormones to exert their usual stimulation of gluconeogenesis from lactate.Calcium ions (1.3 mm) enhance gluconeogenesis from lactate and from lactatepyruvate mixtures (10:1). The stimulatory effects of Ca2+ and NH4+ are additive and, when lactate is the substrate, the rates of gluconeogenesis achieved are so high as to preclude further stimulation by glucagon.  相似文献   

5.
In isolated hepatocytes, dichloroacetate decreased glucose synthesis from lactate, pyruvate and alanine, but not from substrates which bypass pyruvate carboxylase (propionate, glycerol). It was also found to inhibit pyruvate carboxylation in isolated mitochondria, but only after a preincubation period, and had no effect on partially purified pyruvate carboxylase. Hepatocytes and liver mitochondria metabolized [14C] dichloroacetate to oxalate which inhibits pyruvate carboxylase and mimics, without preincubation, the effects of dichloroacetate in mitochondrial pyruvate carboxylation. Thus, oxalate appears to be responsible for the inhibition of gluconeogenesis by dichloroacetate at the level of pyruvate carboxylation.  相似文献   

6.
1. The effect of triperidol on the metabolism of glucose, pyruvate, glutamate, aspartate and glycine was studied with rat brain-cortex slices, U-14C-labelled substrates and a quantitative radiochromatographic technique. 2. Triperidol at a concentration of 0·2mm decreased the oxygen uptake and the 14CO2 production by about 30% when glucose, pyruvate and glutamate were used as substrates, whereas no effects were observed with aspartate and glycine. 3. The drug did not alter qualitatively the metabolic pattern of the substrates. 4. Quantitatively, triperidol decreased the incorporation of 14C from [U-14C]glucose and [U14-C]-pyruvate into glutamate, glutamine and γ-aminobutyrate but not into lactate, alanine and aspartate. The overall utilization rates of glucose and pyruvate were decreased. The relative specific radioactivities of glutamate and aspartate were also decreased. 5. Triperidol increased the rate of disappearance of U-14C-labelled glutamate, aspartate and glycine from the incubation medium, and altered the distribution of their metabolites between medium and tissue. 6. No appreciable effect of triperidol on [1-14C]galactose disappearance was found.  相似文献   

7.
Oxamate, a structural analog of pyruvate, known as a potent inhibitor of lactic dehydrogenase, lactic dehydrogenase, produces an inhibition of gluconeogenic flux in isolated perfused rat liver or hepatocyte suspensions from low concentrations of pyruvate (less than 0.5 mM) or substrates yielding pyruvate. The following observations indicate that oxamate inhibits flux through pyruvate carboxylase: accumulation of substrates and decreased concentration of all metabolic intermediates beyond pyruvate; decreased levels of aspartate, glutamate, and alanine; and enhanced ketone body production, which is a sensitive indicator of decreased mitochondrial free oxaloacetate levels. The decreased pyruvate carboxylase flux does not seem to be the result of a direct inhibitory action of oxamate on this enzyme but is secondary to a decreased rate of pyruvate entry into the mitochondria. This assumption is based on the following observations: Above 0.4 mM pyruvate, no significant inhibitory effect of oxamate on gluconeogenesis was observed. The competitive nature of oxamate inhibition is in conflict with its effect on isolated pyruvate carboxylase which is noncompetitive for pyruvate. Fatty acid oxidation was effective in stimulating gluconeogenesis in the presence of oxamate only at concentrations of pyruvate above 0.4 mM. Since only at low pyruvate concentrations its entry into the mitochondria occurs via the monocarboxylate translocator, from these observations it follows that pyruvate transport across the mitochondrial membrane, and not its carboxylation, is the first nonequilibrium step in the gluconeogenic pathway. In the presence of oxamate, fatty acid oxidation inhibited gluconeogenesis from lactate, alanine, and low pyruvate concentrations (less than 0.5 mM), and the rate of transfer of reducing equivalents to the cytosol was significantly decreased. Whether fatty acids stimulate or inhibit gluconeogenesis appears to correlate with the rate of flux through pyruvate carboxylase which ultimately seems to rely on pyruvate availability. Unless adequate rates of oxaloacetate formation are maintained, the shift of the mitochondrial NAD couple to a more reduced state during fatty acid oxidation seems to decrease mitochondrial oxaloacetate resulting in a decreased rate of transfer of carbon and reducing power to the cytosol.  相似文献   

8.
The urea cycle in the liver of adjuvant-induced arthritic rats was investigated using the isolated perfused liver. Urea production in livers from arthritic rats was decreased during substrate-free perfusion and also in the presence of the following substrates: alanine, alanine + ornithine, ammonia, ammonia + lactate, ammonia + pyruvate and glutamine but increased when arginine and citrulline + aspartate were the substrates. No differences were found with ammonia + aspartate, ammonia + aspartate + glutamate, aspartate, aspartate + glutamate and citrulline. Ammonia consumption was smaller in the arthritic condition when the substance was infused together with lactate or pyruvate but higher when the substance was simultaneously infused with aspartate or aspartate + glutamate. Glucose production tended to correlate with the smaller or higher rates of urea synthesis. Blood urea was higher in arthritic rats (+25.6%), but blood ammonia was lower (–32.2%). Critical for the synthesis of urea from various substrates in arthritic rats seems to be the availability of aspartate, whose production in the liver is probably limited by both the reduced gluconeogenesis and aminotransferase activities. This is indicated by urea synthesis which was never inferior in the arthritic condition when aspartate was exogenously supplied, being even higher when both aspartate and citrulline were simultaneously present. Possibly, the liver of arthritic rats has a different substrate supply of nitrogenous compounds. This could be in the form of different concentrations of aspartate or other aminoacids such as citrulline or arginine (from the kidneys) which allow higher rates of hepatic ureogenesis.  相似文献   

9.
Summary Gluconeogenic, lipogenic, glycogenic and oxidative rates were estimated from14C-lactate,14C-alanine and14C-aspartate using a hepatocyte preparation isolated from starved immature American eels,Anguilla rostrata. Lactate gluconeogenesis increased significantly during starvation at 5 and 15°C. Alanine gluconeogenesis generally decreased during starvation. At the 2nd month of the starvation at 5 and 15°C, and the 8th month of starvation at 15°C, however, alanine gluconeogenesis was significantly higher than in the fed control. These increases in alanine gluconeogenesis occurred during a period of high glucose demand. Aspartate gluconeogenesis was quantitatively minor when compared to the other two substrates. Glycerol synthesis and esterification from the three substrates increased until the 5th month at 5 and 15°C followed by a gradual decline thereafter. Significant increases in glycogen synthesis occurred between the 3rd and the 5th months at 15°C, but rates were small compared to glucose synthesis. Rates of substrate oxidation appeared sufficient to provide adequate ATP to sustain gluconeogenesis in both the fed and starved eel hepatocyte. Glucagon stimulated lactate gluconeogenesis, but not amino acid gluconeogenesis in late starved eel hepatyocytes. Major changes in metabolite concentrations that occurred during starvation were increases in plasma glucose and amino acids; a significant liver glycogen depletion at the 2nd month followed by a return to control values at the third month; and, a significant protein depletion in white skeletal muscle at the 3rd month. These data suggest that lactate glucogeogenesis, but not amino acid gluconeogenesis or glycogenolysis, is the major source of tissue carbohydrates during eel starvation.This work was supported from operating grants to TWM from the National Research Council of Canada (A6944)  相似文献   

10.
To test the hypothesis that fetal hepatic glutamate output diverts the products of hepatic amino acid metabolism from hepatic gluconeogenesis, ovine fetal hepatic and umbilical uptakes of glucose and glucogenic substrates were measured before and during fetal glucagon-somatostatin (GS) infusion and during the combined infusion of GS, alanine, glutamine, and arginine. Before the infusions, hepatic uptake of lactate, alanine, glutamine, arginine, and other substrates was accompanied by hepatic output of pyruvate, aspartate, serine, glutamate, and ornithine. The GS infusion induced hepatic output of 1.00 +/- 0.07 mol glucose carbon/mol O(2) uptake, an equivalent reduction in hepatic output of pyruvate and glutamate carbon, a decrease in umbilical glucose uptake and placental uptake of fetal glutamate, an increase in hepatic alanine and arginine clearances, and a decrease in umbilical alanine, glutamine, and arginine uptakes. The latter result suggests that glucagon inhibits umbilical amino acid uptake. We conclude that fetal hepatic pyruvate and glutamate output is part of an adaptation to placental function that requires the fetal liver to maintain both a high rate of catabolism of glucogenic substrates and a low rate of gluconeogenesis.  相似文献   

11.
Glucose and ammonia production were examined in kidney tubules isolated from suckling and early-weaned lambs, on days 10-30 after birth, with abrupt weaning occurring at day 14. There were no differences in the rates of glucose or ammonia production for a given substrate by tubules isolated from any of the lambs, regardless of age or stage of weaning. The preferred substrates for gluconeogenesis were glycerol = lactate greater than propionate = pyruvate = fructose = proline greater than alanine greater than glutamate greater than glutamine greater than aspartate greater than glycine greater than serine, and for ammoniagenesis were glutamine much greater than alanine greater than aspartate much greater than serine greater than glycine = glutamate = proline.  相似文献   

12.
In the presence of 0.5 mM extracellular Ca2+ concentration both 1–34 human parathyroid hormone fragment (0.5 μg/ml) as well as 0.1 mM dibutyryl cAMP stimulated gluconeogenesis from lactate in renal tubules isolated from fed rabbits. However, these two compounds did not affect glucose synthesis from pyruvate as substrate. When 2.5 mM Ca2+ was present the stimulatory effect of the hormone fragment on gluconeogenesis from lactate was not detected but dibutyryl cAMP increased markedly the rate of glucose formation from lactate, dihydroxyacetone and glutamate, and inhibited this process from pyruvate and malate. Moreover, dibutyryl cAMP was ineffective in the presence of either 2-oxoglutarate or fructose as substrate. Similar changes in glucose formation were caused by 0.1 mM cAMP. As concluded from the ‘crossover’ plot the stimulatory effect of dibutyryl cAMP on glucose formation from lactate may result from an acceleration of pyruvate carboxylation due to an increase of intramitochondrial acetyl-CoA, while an inhibition by this compound of gluconeogenesis from pyruvate is likely due to an elevation of mitochondrial NADH/NAD+ ratio, resulting in a decrease of generation of oxaloacetate, the substrate of phosphoenolpyruvate carboxykinase. Dibutyryl cAMP decreased the conversion of fracture 1,6-bisphosphate to fructose 6-phosphate in the presence of both substrates which may be secondary to an inhibition of fructose 1,6-bisphosphatase.  相似文献   

13.
Evoked release of glutamate and aspartate from cultured cerebellar granule cells was studied after preincubation of the cells in tissue culture medium with glucose (6.5 mM), glutamine (1.0 mM),d[3H] aspartate and in some cases aminooxyacetate (5.0 mM) or phenylsuccinate (5.0 mM). The release of endogenous amino acids and ofd-[3H] aspartate was measured under physiological and depolarizing (56 mM KCl) conditions both in the presence and absence of calcium (1.0 mM), glutamine (1.0 mM), aminooxyacetate (5.0 mM) and phenylsuccinate (5.0 mM). The cellular content of glutamate and aspartate was also determined. Of the endogenous amino acids only glutamate was released in a transmitter fashion and newly synthesized glutamate was released preferentially to exogenously suppliedd-[3H] aspartate, a marker for exogenous glutamate. Evoked release of endogenous glutamate was reduced or completely abolished by respectively, aminooxyacetate and phenylsuccinate. In contrast, the release ofd-[3H] aspartate was increased reflecting an unaffected release of exogenous glutamate and an increased psuedospecific radioactivity of the glutamate transmitter pool. Since aminooxyacetate and phenylsuccinate inhibit respectively aspartate aminotransferase and mitochondrial keto-dicarboxylic acid transport it is concluded that replenishment of the glutamate transmitter pool from glutamine, formed in the mitochondrial compartment by the action of glutaminase requires the simultaneous operation of mitochondrial keto-dicarboxylic acid transport and aspartate aminotransferase which is localized both intra- and extra-mitochondrially. The purpose of the latter enzyme apparently is to catalyze both intra- and extra-mitochondrial transamination of -ketoglutarate which is formed intramitochondrially from the glutamate carbon skeleton and transferred across the mitochondrial membrane to the cytosol where transmitter glutamate is formed. This cytoplasmic origin of transmitter glutamate is in aggreement with the finding thatd-[3H] aspartate readily labels the transmitter pool even when synthesis of endogenous transmitter is impaired in the presence of AOAA or phenylsuccinate.Special issue dedicated to Dr Elling Kvamme  相似文献   

14.
Summary Changes in the concentrations of ammonia, glutamate, alanine, aspartate, -ketoglutarate, oxaloacetate and succinate were measured in freeze-clamped lateralred muscle, dorsal white muscle and liver, and in rapidly cooled blood of goldfish after 12 h of anoxia. Alanine accumulation, succinate accumulation and aspartate depletion are observed in all tissues examined; in the liver the concentrations of glutamate increase and those of ammonia decrease. The mass-action ratio of the glutamate-pyruvate transaminase-catalyzed reaction stays within one order of magnitude from thermodynamic equilibrium in the direction of alanine formation. The mass-action ratio of the glutamate-oxaloacetate transaminase reaction is far from equilibrium when measured oxaloacetate concentrations are used. When levels of free oxaloacetate are calculated from LDH and MDH equilibrium constants, the mass-action ratio of glutamate-oxaloacetate transamination is close to equilibrium in the direction of aspartate formation. Since neither alanine nor glutamate decreases, and since ammonia gradients suggest a continuous ammonia production in all tissues examined, anaerobic proteolysis is assumed. A possible coupling between amino acid catabolism and ethanol production is discussed.Abbreviations ALA alanine - ASP aspartate - EDTA ethylene diamine tetraacetate - FP ox oxidated flavoprotein - FP red reduced flavoprotein - FUM fumarate - GLU glutamate - GOT glutamate oxaloacetate transaminase - GPT glutamate pyruvate transaminase - IMP inosine monophosphate - KG -ketoglutarate - LDH lactate dehydrogenase - MAL malate - MAR mass action ratio - MDH malate dehydrogenase - OAA oxaloacetate - PYR pyruvate - sAMP adenylosuccinate - SDH succinate dehydrogenase - SUCC succinate  相似文献   

15.
Kinetic and biochemical parameters of nitrogen-13 flux from L-[13N]-glutamate in myocardium were examined. Tissue radioactivity kinetics and chemical analyses were determined after bolus injection of L-[13N]glutamate into isolated arterially perfused interventricular septa under various metabolic states, which included addition of lactate, pyruvate, aminooxyacetate (a transminase inhibitor), or a combination of aminooxyacetate and pyruvate to the standard perfusate containing insulin and glucose. Chemical analysis of tissue and effluent at 6 min allowed determination of the composition of the slow third kind kinetic component of the time-activity curves. 13N-labeled aspartate, alanine and glutamate accounted for more than 80% of the tissue nitrogen-13 under the experimental conditions used. Specific activities for these amino acids were constant, but not identical to each other, from 6 through 15 min after administration of L-[13N]glutamate. Little labeled ammonia (1.9%) and glutamine (4.7%) were produced, indicating limited accessibility of exogenous glutamate to catabolic mitochondrial glutamate dehydrogenase and glutamine synthetase, under control conditions. Lactate and pyruvate additions did not affect tissue amino acid specific activities. Aminooxyacetate suppressed formation of 13N-labeled alanine and aspartate and increased production of L-[13N]glutamine and [13N]ammonia. Formation of [13N]ammonia was, however, substantially decreased when aminooxyacetate was used in the presence of exogenous pyruvate. The data support a model for glutamate compartmentation in myocardium not affected by increasing the velocity of enzymatic reactions through increased substrate (i.e., lactate or pyruvate) concentrations but which can be altered by competitive inhibition of transaminases (via aminooxyacetate) making exogenous glutamate more available to other compartments.  相似文献   

16.
The influence of maternal energy intake on the development of gluconeogenesis was studied in the liver of the bovine fetus from Days 88 to 270 of gestation. Fetal liver activities (units per gram of tissue) of cytoplasmic GTP:oxalacetate carboxy-lyase (transphosphorylating) (PEPCK) and mitochondrial l-malate:NAD+ oxidoreductase (MDH) increased linearly with increasing gestational age. Fetal cytoplasmic MDH activities reached maternal levels by 120 days of gestation, and fetal mitochondrial pyruvate carboxylase approached maternal levels by 200 days of gestation. Fetal activities of mitochondrial and cytoplasmic propionyl-CoA:carbondioxide ligase (ADP-forming) (PCC) did not change with gestational age and were about 45 and 7%, respectively, of maternal levels. Fetal activities of mitochondrial and cytoplasmic l-aspartate: 2-oxoglutarate aminotransferase were both about 24% of the maternal activities throughout gestation. Maternal and fetal liver activities of d-fructose-1,6-diphosphate 1-phosphohydrolase (FDP) were similar and did not change with gestational age. Glucose synthesis from lactate by fetal liver slices in vitro was slightly lower and, from alanine and aspartate, was slightly higher than glucose synthesis by maternal liver slices. Restriction of maternal dietary energy intake did not significantly alter gluconeogenic-related enzyme activity in vitro in maternal or fetal liver or in the metabolism of aspartate, alanine, or lactate to glucose or CO2 by liver slices in vitro. A capacity for gluconeogenesis has been measured in the bovine fetus as early as 88 days of gestation.  相似文献   

17.
Lietz T  Rybka J  Bryła J 《Amino acids》1999,16(1):41-58
Summary In isolated rabbit renal cortical tubules, glucose synthesis from 1 mM alanine is negligible, while the amino acid is metabolized to glutamine and glutamate. The addition of 0.5 mM octanoate plus 2 mM glycerol induces incorporation of [U-14C]Alnine into glucose and decreases glutamine synthesis, whereas oleate and palmitate in the presence of glycerol are less potent than octanoate. Gluconeogenesis is also significantly accelerated when glycerol is substituted by lactate. In view of an increase in14CO2 fixation and elevation of both cytosolic and mitochondrial NADH/NAD+ ratios, the activation of glucose formation from alanine upon the addition of glycerol and octanoate is likely due to (i) stimulation of pyruvate carboxylation, (ii) increased availability of NADH for glyceraldehyde-3-phosphate dehydrogenase and (iii) elevation of mitochondrial redox state causing a diminished provision of ammonium for glutamine synthesis. The induction of gluconeogenesis in the presence of alanine, glycerol and octanoate is not related to cell volume changes. The results presented in this paper show the importance of free fatty acids and glycerol for regulation of renal gluconeogenesis from alanine. The possible physiological significance of the data is discussed.  相似文献   

18.
Effects of various ketogenic substrates on gluconeogenesis from lactate or alanine were compared. The results suggest that, in intact liver cells, cytoplasmic pyruvate is transported into mitochondria in exchange for intramitochondrially generated acetoacetate. An interrelationship between gluconeogenesis and ketogenesis may thus exist in the liver at the level of mitochondrial pyruvate carrier.  相似文献   

19.
Alanine dehydrogenase in Arthrobacter fluorescens exhibited an allosteric behaviour and two K m values for ammonium were estimated. In batch cultures at different ammonium concentrations and in continuous culture following an NH4 + pulse, the level of ADH activity seems to be regulated by the ammonium concentration, high activities being observed when extracellular ammonium was in excess. The response to the growth rate of an ammonium-limited chemostat culture of A. fluorescens seems to indicate that alanine dehydrogenase and glutamine synthetase activities were inversely related. High activities of glutamate oxaloacetate transaminase and glutamate pyruvate transaminase have been found in crude extract of ammonium-limited cultures. From the results obtained in batch cultures grown at different glucose concentrations and in carbon-limited chemostat culture it appeared that the limitation by glucose influenced alanine dehydrogenase activity negatively. No glutamate dehydrogenase activity and no glutamate synthase activity could be detected with either NADH or NADPH as coenzymes.Abbreviations ADH alanine dehydrogenase - GS glutamine synthetase - GDH glutamate dehydrogenase - GOGAT glutamine oxoglutarate aminotransferase - GOT glutamate oxaloacetate transaminase - GPT glutamate pyruvate transaminase  相似文献   

20.
The rate of tritium removal from l[3-3H]lactate by hamster liver cells is faster than the analytical rate of lactate utilization, or the rate of 14C disappearance from l[U-14C]lactate, with the result that the 3H/14C ratio in residual lactate from l-[U-14C,3-3H]lactate decreases. However, addition of low concentrations (0.1 to 1.0 mM) of l-cycloserine, a glutamate pyruvate transaminase inhibitor, nearly equalizes the rates of isotope utilization from l-[3-3H]lactate and l-[U-14C]lactate. The results suggest a very limited rate of recycling of phosphoenolpyruvate back to pyruvate during gluconeogenesis from lactate in fasted hamster liver cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号