首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Kinetics of growth and nitrogenase induction inFrankia sp. Ar13 were studied in batch culture. Growth on defined medium with NH 4 + as the N source displayed typical batch culture kinetics; however, a short stationary phase was followed by autolysis. Removal of NH 4 + arrested growth and initiated vesicle differentiation. Vesicle numbers increased linearly and were paralleled by a rise in nitrogenase (acetylene reduction) activity. Nitrogenase activity (10 nM C2H4·mg protein–1·min–1) was sufficient to support growth on N2 and protein levels rose in parallel with nitrogenase induction. Optimal conditions for vesicle and nitrogenase induction were investigated. Maximum rates of acetylene reduction were obtained with 5 to 10 mM K2 HPO4/KH2PO4, 0.1 mM CaCl2 and MgSO4. The optimum pH for acetylene reduction and respiration was around 6.7. The amount (5 to 10 g protein/ml) and stage (exponential) of growth of the ammonium-grown inoculum strongly influenced the subsequent development of nitrogenase activity. Propionate was the most effective carbon source tested for nitrogenase induction. Respiration in propionate-grown cells was stimulated by CO2 and biotin, suggesting that propionate is metabolized via the propionyl CoA pathway.  相似文献   

2.
The fungi Aspergillus fumigatus, Hormoconis resinae and Candida silvicola were isolated from the fuel/water interfacial biomass in diesel storage tanks in Brazil. Their corrosive activities on mild steel ASTM A 283-93-C, used in storage tanks for urban diesel, were evaluated after various times of incubation at 30 °C in a modified Bushnell–Haas mineral medium (without chlorides) with diesel oil as sole source of carbon. Their ability to degrade diesel oil was evaluated after growth for 30 and 60 days. The fungus Aspergillus fumigatus and the consortium of all three organisms showed the highest production of biomass; A. fumigatus gave the greatest value for steel weight loss and produced the greatest reduction in pH of the aqueous phase. Solid phase microextraction (SPME) showed that the main acid present in the aqueous phase after 60 days incubation with A. fumigatus was propionic acid. Polarization curves indicated that microbial activity influenced the anodic process, probably by the production of corrosive metabolites, and that this was particularly important in the case of A. fumigatus. This fungus preferentially degraded aliphatic hydrocarbons of chain lengths C11--C13 in the diesel, producing 47.7, 37.5 and 51% reductions in C11, C12 and C13, respectively. It produced more degradation than the consortium after 60 days incubation. It is likely that the presence of other species in the consortium inhibited the growth of A. fumigatus, thus resulting in a lower rate of diesel fuel degradation.  相似文献   

3.
The actions of two novel diselenide-bridged bis(porphyrin)s (1 and 2) on Staphylococcus aureus growth was investigated by microcalorimetry at 37.00°C, compared with that of Na2SeO3. Differences in their capacities to inhibit the growth metabolism of S. aureus were observed. By analyzing the power–time curves, crucial parameters such as the rate constant of bacterial growth (k), inhibitory rate (I), and generation time (t G) were determined. The growth rate constant (k) of S. aureus (in the log phase) in the presence of the drugs decreased with increasing concentrations of the drugs regularly. The relationship of k and c is nearly linear for diselenide-bridged bis(porphyrin) 2. The sequence of the antibacterial activities of these selenium compounds tested was 2 > 1 > Na2SeO3.  相似文献   

4.
谢君魔芋(Amorphophallus xiei)是起源于云南西南地区热带雨林的典型喜阴植物,近年来得到了广泛种植和推广,在种植过程中,谢君魔芋需要采用遮荫栽培模式。为了揭示谢君魔芋对光照强度的适应策略,该研究探讨了生长在不同光照强度下(透光率为50%、29%、17%、7%)谢君魔芋叶片的光合作用特征、光合诱导特征、光合色素含量以及叶片氮素(N)含量和N分配。结果表明:随着生长环境光照强度的降低,单位叶面积和单位叶质量最大净光合速率、光合色素含量、最大羧化速率、最大电子传递速率及比叶面积均增大,而暗呼吸和光补偿点均减小。在光合诱导过程中,生长在透光率为17%光环境中的谢君魔芋完成50%光合诱导所需的时间最短,约为81.4 s;在光诱导进行10 min时,诱导状态最高,为87.3%。完成50%和90%光合诱导所需的时间与低光下初始气孔导度呈负相关关系。随着生长光照强度降低,叶片中的N分配到羧化组分和生物能转化组分中的比例先增大后减小,在透光率为17%的光环境下具有最大值;而叶片中的N分配到捕光色素组分中的比例随着生长环境光照强度降低而增加。该研究结果表明,喜阴植物谢君魔芋通过加强对低光和动态光源的利用能力及有效的N资源分配策略来适应低光照环境。  相似文献   

5.
Fed-batch fermentation of a methanol utilization plus (Mut+) Pichia pastoris strain typically has a growth phase followed by a production phase (induction phase). In the growth phase glycerol is usually used as carbon for cell growth while in the production phase methanol serves as both inducer and carbon source for recombinant protein expression. Some researchers employed a mixed glycerol-methanol feeding strategy during the induction phase to improve production, but growth kinetics on glycerol and methanol and the interaction between them were not reported. The objective of this paper is to optimize the mixed feeding strategy based on growth kinetic studies using a Mut+ Pichia strain, which expresses the heavy-chain fragment C of botulinum neurotoxin serotype C [BoNT/C(Hc)] intracellularly, as a model system. Growth models on glycerol and methanol that describe the relationship between specific growth rate (μ) and specific glycerol/methanol consumption rate (ν gly, ν MeOH) were established. A mixed feeding strategy with desired μ gly/μ MeOH =1, 2, 3, 4 (desired μ MeOH set at 0.015 h−1) was employed to study growth interactions and their effect on production. The results show that the optimal desired μ gly/μ MeOH is around 2 for obtaining the highest BoNT/C(Hc) protein content in cells: about 3 mg/g wet cells. Electronic Publication  相似文献   

6.
During growth of Methanobacterium thermoautotrophicum in a fed-batch fermentor, the cells are confronted with a steady decrease in the concentration of the hydrogen energy supply. In order to investigate how the organism responds to these changes, cells collected during different growth phases were examined for their methanogenic properties. Cellular levels of the various methanogenic isoenzymes and functionally equivalent enzymes were also determined. Cells were found to maintain the rates of methanogenesis by lowering their affinity for hydrogen: the apparent K m H2 decreased in going from the exponential to the stationary phase. Simultaneously, the maximal specific methane production rate changed. Levels of H2-dependent methenyl-tetrahydromethanopterin dehydrogenase (H2-MDH) and methyl coenzyme M reductase isoenzyme II (MCR II) decreased upon entry of the stationary phase. Cells grown under conditions that favored MCR II expression had higher levels of MCR II and H2-MDH, whereas in cells grown under conditions favoring MCR I, levels of MCR II were much lower and the cells had an increased affinity for hydrogen throughout the growth cycle. The use of thiosulfate as a medium reductant was found to have a negative effect on levels of MCR II and H2-MDH. From these results it was concluded that M. thermoautotrophicum responds to variations in hydrogen availability and other environmental conditions (pH, growth temperature, medium reductant) by altering its physiology. The adaptation includes, among others, the differential expression of the MDH and MCR isoenzymes.  相似文献   

7.
Two gramineous species among wild plants, Echinochloa oryzicola Vasing and Setaria viridis (L.) Beauv., and Oryza sativa L. cv. Nipponbare were subjected to salt stress. The relative growth rate (RGR), Na content, photosynthetic rate, antioxidant enzymes activity (superoxide disumutase (SOD), catalase (CAT), ascorbate peroxidase (APx) and glutathione reductase (GR)), and malondialdehyde (MDA) content in leaves after NaCl treatment were studied. RGR significantly decreased in O. sativa more than in E. oryzicola and S. viridis. Comparatively salt-tolerant S. viridis showed higher growth rate, lower Na accumulation rate in leaves, higher photosynthetic rate, and induced more SOD, CAT, APx, and GR activity and lower increase of MDA content as compared to the salt-sensitive O. sativa. At the same time, the comparatively salt-tolerant E. oryzicola also showed higher growth rate, much lower Na accumulation and no observable increase of MDA content, even though the CAT and APx activities were not induced by salinity. These results suggested that the scavenging system induced by H2O2-mediated oxidative damage might, at least in part, play an important role in the mechanism of salt tolerance against cell toxicity of NaCl in some gramineous plants  相似文献   

8.
The effects of growth phase, reductions in the water activity (a w) of the growth medium and mild desiccation on the composition and the degree of unsaturation of cellular fatty acids (CFA) of Sinorhizobium meliloti, Bradyrhizobium elkaniiand Bradyrhizobium japonicum were studied. During the course of growth, an interchange of cis-vaccenic with lactobacillic acid and a slight increase in palmitic acid were observed while other fatty acids remained constant. The degree of unsaturation was significantly higher in the exponential phase of growth. Reductions in the a w of the medium led to an increase in lag phase, a reduction in growth rate and maximal optical densities (OD) in stationary phase cells. A decrease in the degree of unsaturation of CFA was also observed as the a w was reduced from 0.999 to 0.969 and after desiccation to 83.5% relative humidity (R.H.). The changes in the degree of unsaturation of CFA observed after growth at reduced a w may be one of the pre-adaptation steps to endure more severe desiccation.  相似文献   

9.
Fan DD  Luo Y  Mi Y  Ma XX  Shang L 《Biotechnology letters》2005,27(12):865-870
Fed-batch cultures of recombinant Escherichia coli BL21 for producing human-like collagen were performed at different specific growth rates (0.1~0.25 h−1) before induction and at a constant value of 0.05 h−1 after induction by the method of pseudo-exponential feeding. Although the final biomass (around 69 g l−1) was almost the same in all fed-batch cultures, the highest product concentration (13.6 g l−1) was achieved at the specific growth rate of 0.15 h−1 and the lowest (9.6 g l−1) at 0.25 h−1. The mean productivity of human-like collagen was the highest at 0.15 h−1 (0.57 g l−1 h−1) and the lowest at 0.1 h−1 (0.35 g l−1 h−1). In the phase before induction, the cell yield coefficient (YX/S) decreased when the specific growth rate increased, while the formation of acetic acid increased upto 2.5 g l−1 at 0.25 h−1. The mean product yield coefficient (YP/S) also decreased with specific growth rate increasing. The respiration quotient (RQ) increased slightly with specific growth rate increasing before induction, and the mean value of RQ was around 72%. The optimum growth rate for human-like collagen production was 0.15~0.2 h−1.  相似文献   

10.
The seasonal variability of specific growth rate and the carbon stable isotope ratio (δ13C) of leaf blades (δ13Cleaf) of a temperate seagrass, Zostera marina (within 10 days old) were measured simultaneously, together with the δ13C of dissolved inorganic carbon (δ13CDIC) at three sites in the semi-closed Akkeshi estuary system, northeastern Japan, in June, September, and November 2004. The δ13Cleaf ranged from −16.2 to −6.3‰ and decreased from summer to winter. The simultaneous measurement of the δ13Cleaf, growth rate, and morphological parameters (mean leaf length and width, mean number of leaves per shoot, and sheath length) of the seagrass and δ13CDIC in the surrounding water allowed us to compare directly the δ13Cleaf and specific growth rate of seagrass. The difference in the δ13C of seagrass leaves relative to the source DIC (Δδ13Cleaf − DIC) was the least negative (−11 to −7‰) in June at all three sites and became more negative (−17 to −8‰) as the specific growth rate decreased. This positive correlation between Δδ13Cleaf − DIC and specific growth rate can be used to diagnose the growth of seagrasses. Δδ13Cleaf − DIC changed by −1.7 ± 0.2‰ when the leaf specific growth rate decreased by 1% d−1.  相似文献   

11.
The objective of this research was to understand how carbon loading influences hydrogen (H2) synthesis and metabolic flow patterns in the thermophilic, cellulolytic bacterium, Clostridium thermocellum. C. thermocellum was cultivated in batch cultures with high (5 g L−1) and low (1 g L−1) initial concentrations of α-cellulose at 60°C. The growth rate of C. thermocellum was 22% lower (0.15 h−1) in cultures with low-cellulose concentration compared with cultures with high-cellulose concentrations. Although substrate depletion coincided with the end of log-growth in low-cellulose cultures, the prime reason for growth arrest in high-cellulose cultures was not identified. Ethanol, acetate, and formate were the major soluble end-products with concomitant release of H2 and CO2 under both conditions. Lactate appeared during the late log phase in high-carbon cultures when pH dropped below 6.4 and became the major end-product in stationary phase. During the exponential phase of cell growth, significantly higher yields for H2 and acetate (1.90 ± 0.14 and 1.11 ± 0.04 mol/mol glucose equivalent, respectively) were obtained from low-cellulose cultures compared to those from high-cellulose cultures. The maximum specific rate of H2 production, 6.41 ± 0.13 mmol H2/g dry cell/h, obtained during the exponential phase from low-carbon cultures was about 37% higher than that obtained from high-carbon cultures.  相似文献   

12.
Freshwaters of varying natural nutrient enrichment were used as growth media for the culture of an autochthonous, heterotrophic, freshwater bacterium, Aeromonas hydrophila. The growth rate of the bacterium in eutrophic waters was increased to the greatest extent by adding carbon, as glucose; generation times decreased by up to 65%. Additions of carbon and phosphorus increased the maximal cell densities by over 25-fold. In oligotrophic waters, bacterial growth was most strongly promoted by the simultaneous additions of carbon (as glucose) and phosphorus (as KH2PO4). In these waters, stationary phase densities were increased as much as 100-fold, with a corresponding 70% increase in growth rate. These data provide at least a partial explanation for the previously observed correlation between A. hydrophila densities and the trophic states of freshwaters.The authors are with the Department of Microbiology, Morrill Hall, University of Rhode Island, Kingston, Rhode Island 02881, USA  相似文献   

13.
The influence of the composition of methanol/glucose-mixtures as only sources of carbon and energy on growth and regulation of the synthesis of enzymes involved in methanol-dissimilation was studied under chemostat conditions at a fixed dilution rate with the methylotrophic yeasts Hansenula polymorpha and Kloeckera sp. 2201. Both carbon sources were found to be utilized completely independently of the composition of the C1/C6 mixture. Using mixtures of 14C-labelled methanol and glucose the growth yield for glucose was found to be constant for all C1/C6-mixtures tested and both yeasts. The growth yield for methanol, however, was reduced by up to 25% when the proportion of methanol in the inflowing medium was lower than 20% (w/w with respect to glucose) for H. polymorpha and 50% (w/w with respect to glucose) for Kloeckera sp. 2201 respectively. During growth with C1/C6-mixtures containing higher C1-proportions of methanol regular growth yields for methanol were recorded which corresponded to the growth yields found with methanol as the only carbon source.The regulation of the synthesis of the enzymes of the dissimilatory pathway for methanol was found to be under multiple control. Although glucose was present in the medium methanol had a positive effect on the synthesis of these enzymes. Thus, in addition to derepression induction by methanol was also observed. This inductive effect was found to increase with increasing proportions of methanol in the mixture. Depending on the enzyme, 10–40% methanol in the mixture resulted in a maximal induction with enzyme specific activities equal to those found in cells grown with methanol as the only carbon source. No further enhancements in enzyme specific activities were observed during growth on mixtures containing more than 40% methanol.Abbreviations and terms C1 Methanol - C6 glucose - C1/C6 mixture compositions are given in % (w/w) - C0 concentration of 14C in the inflowing medium (DPM ml-1) - C(t) concentration of 14C incorporated in cells as a function of time t (DPM ml-1) - d dilution rate (h-1) - DPM disintegrations per minute - q s q C1 and q C6 are specific rates of consumption of substrate, methanol and glucose respectively [g (g cell dry weight)-1 h-1] - q O2 and q CO2 are the specific rates of oxygen consumption and carbon dioxide release [mmol (g cell dry weight)-1 h-1] - RQ respiration quotient (q CO2 q O2 -1) - s C1 and s C6 are the residual concentrations of methanol and glucose in the culture liquid (g l-1) - s O/C1 and s O/C6 are the concentrations of methanol and glucose in the inflowing medium (g l-1) - Sp.A. enzyme specific activity - x cell dry weight concentration (g l-1) - Y X/C1 and Y X/C6 are growth yields on methanol and glucose respectively (g cell dry weight (g substrate)-1 - Y C/C1 growth yield with methanol with respect to carbon (g carbon assimilated (g carbon supplied)-1 - m maximum specific growth rate (h-1)  相似文献   

14.
A rod shaped, gram positive, non sporulating Acetobacterium strain was isolated that dechlorinated 1,2-dichloroethane (1,2-DCA) to ethene at a dechlorination rate of up to 2 nmol Cl- min-1 mg-1 of protein in the exponential growth phase with formate (40 mM) as the substrate. Although with other growth substrates such as pyruvate, lactate, H2/CO2, and ethanol higher biomass productions were obtained,the dechlorination rate with these substrates was more than 10-fold lower compared with formate growing cells. Neither cell extracts nor autoclaved cells of the isolatedAcetobacterium strain mediated the dechlorination of 1,2-DCA at significant rates. The addition of 1,2-DCA to the media did not result in increased cell production. No significant differences in corrinoid concentrations could be measured in cells growing on several growth-substrates. However, these measurements indicated that differences in corrinoid structure might cause the different dechlorination activity. The Acetobacterium sp. strain gradually lost its dechlorination ability during about 10 transfers in pure culture, probably due to undefined nutritional requirements. 16S rDNA analysis of the isolate revealed a 99.7% similarity with Acetobacterium wieringae. However, the type strains of A. wieringae and A. woodii did not dechlorinate 1,2-DCA.  相似文献   

15.
We investigated the photosynthetic induction time-course in species of different ecological groups grown in contrasting forest irradiance environments, gap and understorey, exposed to different darkness times in order to verify the plant capacity to exploit irradiance heterogeneity. Photosynthetic induction was studied in leaves of Bauhinia forficata and Guazuma ulmifolia (early succession species, ES), and Esenbeckia leiocarpa and Hymenaea courbaril (late succession species, LS). T50 and T90 (time estimates to attain 50 and 90 % of maximum net photosynthetic rate, respectively) varied according to the time of previous exposure to darkness and growth irradiance. In both darkness times of 10 and 30 min, T50 was lower in the LS-than ES-species. These results, jointly with significant higher induction state of the leaves after 10 min of darkness, suggest that the LS-species has a higher potential to sunfleck utilization compared to ES-species, both grown in the understorey. After 10 and 30 min of darkness the differences between ecological groups were not clearly detected in the gap for T50 and T90, indicating that eco-physiological characteristics of each ecological group did not influence the induction time of the species evaluated herein. Thus the capacity to show phenotypic plasticity is not exclusive to an ecological group, but it is rather a more intrinsic feature related to the differential capacity of individuals.  相似文献   

16.
Soil microbial respiration is a critical component of the global carbon cycle, but it is uncertain how properties of microbes affect this process. Previous studies have noted a thermodynamic trade-off between the rate and efficiency of growth in heterotrophic organisms. Growth rate and yield determine the biomass-specific respiration rate of growing microbial populations, but these traits have not previously been used to scale from microbial communities to ecosystems. Here we report seasonal variation in microbial growth kinetics and temperature responses (Q10) in a coniferous forest soil, relate these properties to cultured and uncultured soil microbes, and model the effects of shifting growth kinetics on soil heterotrophic respiration (Rh). Soil microbial communities from under-snow had higher growth rates and lower growth yields than the summer and fall communities from exposed soils, causing higher biomass-specific respiration rates. Growth rate and yield were strongly negatively correlated. Based on experiments using specific growth inhibitors, bacteria had higher growth rates and lower yields than fungi, overall, suggesting a more important role for bacteria in determining Rh. The dominant bacteria from laboratory-incubated soil differed seasonally: faster-growing, cold-adapted Janthinobacterium species dominated in winter and slower-growing, mesophilic Burkholderia and Variovorax species dominated in summer. Modeled Rh was sensitive to microbial kinetics and Q10: a sixfold lower annual Rh resulted from using kinetic parameters from summer versus winter communities. Under the most realistic scenario using seasonally changing communities, the model estimated Rh at 22.67 mol m−2 year−1, or 47.0% of annual total ecosystem respiration (Re) for this forest.  相似文献   

17.
Human serum albumin (HSA) is a cysteine rich molecule that is most abundant in human blood plasma. To remain viable in the market due to lower marketing costs for HSA, it is important to produce a large quantity in an economical manner by recombinant technology. The objective of this study was to maximize recombinant HSA (rHSA) production using a Muts Pichia pastoris strain by fermentation process optimization. We evaluated the impact of process parameters on the production of rHSA, including induction cell density (wet cell weight, g/L) and the control of specific growth rate at induction. In this study, we demonstrated that induction cell density is a critical factor for high level production of rHSA under controlled specific growth rate. We observed higher specific productivities at higher induction cell densities (285 g/L) and at lower specific growth rates (0.0022–0.0024/h) during methanol induction phase, and achieved the broth titer of rHSA up to 10 g/L. The temperature shift from 24 to 28oC was effective to control the specific growth rate at low level (≤0.0024/h) during methanol induction phase while maintaining high specific productivity [0.0908 mgrHSA/(gwcw h)]. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1488–1496, 2014  相似文献   

18.
By using an LKB-2277 Bioactivity Monitor, cycle-flow method, the thermogenic curves of aerobic growth for Bacillus thuringiensis cry II strain at 28°C have been obtained. The metabolic thermogenic curves of B. thuringiensis cry II contained two distinct patterns: the first reflects the changes during the bacterial growth phase and the second corresponds to the sporulation phase. From these thermogenic curves in the absence and presence of Sm3+ ions, the thermokinetic parameters such as the growth rate constants k, the interval time τI, the maximum power P max 1 and heat-output Q log for log phase, the maximum power P max 2 and heat-output Q stat for stationary phase, the heat-output Q spor for sporulation phase and total heat effects Q T are calculated. Sm3+ ion has promoting action on the growth of B. thuringiensis cry II in its lower concentration range; on the other hand, this ion has inhibitory action on the sporulation of B. thuringiensis in its higher concentration range. We also found that the effects of Sm3+ ion on B. thuringiensis during the sporulation phase were far greater than that during the bacterial phase. It is concluded that the application of B. thruringiensis of controlling insecticides is not affected by the presence of the rare-earth elements in the environmental ecosystem.  相似文献   

19.
为了提高西洋参不定根的诱导率和生长速度,该研究以西洋参鲜根为外植体,在基本培养基的基础上优化IBA、碳源、氮源和磷源等营养成分。结果表明:西洋参不定根诱导过程可以明显分为外植体脱分化(愈伤化)、再分化(根形成)和根伸长等三个阶段; MS基本培养基更有利于西洋参不定根的诱导,可能与MS培养基中矿质元素含量高有关;当培养基中IBA浓度达到2 mg·L~(-1)时,外植体表面上不定根分布密度大,诱导率达到(96±3.5)%;培养基中添加蔗糖到30 g·L~(-1)时,不定根的诱导效果最好,但继续提高浓度后不定根变短、直径变粗;培养基中NO_3~-∶NH_4~+和PO_4~(3-)浓度分别为20∶10(总氮量30 mmol·L~(-1))和25.0mmol·L~(-1)时,西洋参不定根诱导率达到最大。结果提示优化培养条件可以显著改善西洋参不定根的诱导和生长,为后续西洋参不定根规模化培养提供理论支持。  相似文献   

20.
The effect of two inorganic salts, ammonium sulphate and potassium dihydrogenphosphate, on the partitioning of pectinases produced by Polyporus squamosus in polyethylene glycol/crude dextran aqueous two-phase system is reported. Presence of both salts at different concentration did not affect partition of biomass, so fungal growth was occurring exclusively in the bottom phase. At 30 mmol (NH4)2SO4/l in two-phase medium, the partition coefficient of endo-pectinase was 3.9, and it was 80% improved in comparison to that obtained at twofold lower salt concentration. On the other hand, higher (NH4)2SO4 concentration increased total exo-pectinase activity produced, but did not affect substantially its partition parameters. Increasing phosphate concentration stimulated partition of both enzymes to the top phase: at 0.2 mol KH2PO4/l the partition coefficient for exo-pectinase was about 20% higher than at 0.1 mol/l, and one-sided partition of endo-pectinase was accomplished, and consequently maximal top phase yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号