首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The serine hydrolase monoacylglycerol lipase (MGL) functions as the main metabolizing enzyme of 2-arachidonoyl glycerol, an endocannabinoid signaling lipid whose elevation through genetic or pharmacological MGL ablation exerts therapeutic effects in various preclinical disease models. To inform structure-based MGL inhibitor design, we report the direct NMR detection of a reversible equilibrium between active and inactive states of human MGL (hMGL) that is slow on the NMR time scale and can be modulated in a controlled manner by pH, temperature, and select point mutations. Kinetic measurements revealed that hMGL substrate turnover is rate-limited across this equilibrium. We identify a network of aromatic interactions and hydrogen bonds that regulates hMGL active-inactive state interconversion. The data highlight specific inter-residue interactions within hMGL modulating the enzymes function and implicate transitions between active (open) and inactive (closed) states of the hMGL lid domain in controlling substrate access to the enzymes active site.  相似文献   

2.
The membrane‐associated serine hydrolase, monoacylglycerol lipase (MGL), is a well‐recognized therapeutic target that regulates endocannabinoid signaling. Crystallographic studies, while providing structural information about static MGL states, offer no direct experimental insight into the impact of MGL's membrane association upon its structure–function landscape. We report application of phospholipid bilayer nanodiscs as biomembrane models with which to evaluate the effect of a membrane system on the catalytic properties and conformational dynamics of human MGL (hMGL). Anionic and charge‐neutral phospholipid bilayer nanodiscs enhanced hMGL's kinetic properties [apparent maximum velocity (Vmax) and substrate affinity (Km)]. Hydrogen exchange mass spectrometry (HX MS) was used as a conformational analysis method to profile experimentally the extent of hMGL–nanodisc interaction and its impact upon hMGL structure. We provide evidence that significant regions of hMGL lid‐domain helix α4 and neighboring helix α6 interact with the nanodisc phospholipid bilayer, anchoring hMGL in a more open conformation to facilitate ligand access to the enzyme's substrate‐binding channel. Covalent modification of membrane‐associated hMGL by the irreversible carbamate inhibitor, AM6580, shielded the active site region, but did not increase solvent exposure of the lid domain, suggesting that the inactive, carbamylated enzyme remains intact and membrane associated. Molecular dynamics simulations generated conformational models congruent with the open, membrane‐associated topology of active and inhibited, covalently‐modified hMGL. Our data indicate that hMGL interaction with a phospholipid membrane bilayer induces regional changes in the enzyme's conformation that favor its recruiting lipophilic substrate/inhibitor from membrane stores to the active site via the lid, resulting in enhanced hMGL catalytic activity and substrate affinity.  相似文献   

3.
Novel monocyclic analogues of 2-arachidonoylglycerol (2-AG) were designed in order to explore the pharmacophoric conformations of this endocannabinoid ligand at the key cannabinergic proteins. All 2-arachidonoyl esters of 1,2,3-cyclohexanetriol [meso-7 (AM5504), (+/-)-8 (AM5503), and meso-9 (AM5505)] were synthesized by regioselective acylation of 2,3-dihydroxycyclohexanone followed by selective reductions. The optically active isomers (+)-8 (AM4434) and (-)-8 (AM4435) were synthesized from (2S,3S)- and (2R,3R)-2,3-dihydroxycyclohexanone, respectively, via a chemoenzymatic route. These head group constrained and conformationally restricted analogues of 2-AG as well as the 1-keto precursors were evaluated as substrates for the endocannabinoid deactivating hydrolytic enzymes monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH), and also were tested for their affinities for CB1 and CB2 cannabinoid receptors. The observed biochemical differences between these ligands can help define the conformational requirements for 2-AG activity at each of the above endocannabinoid protein targets.  相似文献   

4.
Cyclooxygenase-2 (COX-2) can oxygenate the endocannabinoids, arachidonyl ethanolamide (AEA) and 2-arachidonylglycerol (2-AG), to prostaglandin-H2-ethanolamide (PGH2-EA) and -glycerol ester (PGH2-G), respectively. Further metabolism of PGH2-EA and PGH2-G by prostaglandin synthases produces a variety of prostaglandin-EA's and prostaglandin-G's nearly as diverse as those derived from arachidonic acid. Thus, COX-2 may regulate endocannabinoid levels in neurons during retrograde signaling or produce novel endocannabinoid metabolites for receptor activation. Endocannabinoid-metabolizing enzymes are important regulators of their action, so we tested whether PG-G levels may be regulated by monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH). We found that PG-Gs are poor substrates for purified MGL and FAAH compared to 2-AG and/or AEA. Determination of substrate specificity demonstrates a 30-100- and 150-200-fold preference of MGL and FAAH for 2-AG over PG-Gs, respectively. The substrate specificity of AEA compared to those of PG-Gs was approximately 200-300 fold higher for FAAH. Thus, PG-Gs are poor substrates for the major endocannabinoid-degrading enzymes, MGL and FAAH.  相似文献   

5.
The endocannabinoid system plays a critical role in the control of energy homeostasis, but the identity and localization of the endocannabinoid signal involved remain unknown. In the present study, we developed transgenic mice that overexpress in forebrain neurons the presynaptic hydrolase, monoacylglycerol lipase (MGL), which deactivates the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG). MGL-overexpressing mice show a 50% decrease in forebrain 2-AG levels but no overt compensation in other endocannabinoid components. This biochemical abnormality is accompanied by a series of metabolic changes that include leanness, elevated energy cost of activity, and hypersensitivity to β(3)-adrenergic-stimulated thermogenesis, which is corrected by reinstating 2-AG activity at CB(1)-cannabinoid receptors. Additionally, the mutant mice are resistant to diet-induced obesity and express high levels of thermogenic proteins, such as uncoupling protein 1, in their brown adipose tissue. The results suggest that 2-AG signaling through CB(1) regulates the activity of forebrain neural circuits involved in the control of energy dissipation.  相似文献   

6.
2-Arachidonoylglycerol (2-AG) is a naturally occurring monoglyceride that activates cannabinoid receptors and meets several key requisites of an endogenous cannabinoid substance. It is present in the brain (where its levels are 170-folds higher than those of anandamide), is produced by neurons in an activity- and calcium-dependent manner, and is rapidly eliminated. The mechanism of 2-AG inactivation is not completely understood, but is thought to involve carrier-mediated transport into cells followed by enzymatic hydrolysis. We examined the possible role of the serine hydrolase, monoglyceride lipase (MGL), in brain 2-AG inactivation. We identified by homology screening a cDNA sequence encoding for a 303-amino acid protein, which conferred MGL activity upon transfection to COS-7 cells. Northern blot and in situ hybridization analyses revealed that MGL mRNA is unevenly present in the rat brain, with highest levels in regions where CB1 cannabinoid receptors are also expressed (hippocampus, cortex, anterior thalamus and cerebellum). Immunohistochemical studies in the hippocampus showed that MGL distribution has striking laminar specificity, suggesting a presynaptic localization of the enzyme. Adenovirus-mediated transfer of MGL cDNA into rat cortical neurons increased the degradation of endogenously produced 2-AG in these cells, whereas no such effect was observed on anandamide degradation. These results indicate that hydrolysis via MGL may be a primary route of 2-AG inactivation in intact neuronal cells.  相似文献   

7.
Monoacylglycerol lipase (MGL) inhibition provides a potential treatment approach to glaucoma through the regulation of ocular 2-arachidonoylglycerol (2-AG) levels and the activation of CB1 receptors. Herein, we report the discovery of new series of carbamates as highly potent and selective MGL inhibitors. The new inhibitors showed potent nanomolar inhibitory activity against recombinant human and purified rat MGL, were selective (>1000-fold) against serine hydrolases FAAH and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Protein-based 1H NMR experiments indicated that inhibitor 2 rapidly formed a covalent adduct with MGL with a residence time of about 6?h. This interconversion process “intrinsic reversibility” was exploited by modifications of the ligand’s size (length and bulkiness) to generate analogs with “tunable’ adduct residence time (τ). Inhibitor 2 was evaluated in a normotensive murine model for assessing intraocular pressure (IOP), which could lead to glaucoma, a major cause of blindness. Inhibitor 2 was found to decrease ocular pressure by ~4.5?mmHg in a sustained manner for at least 12?h after a single ocular application, underscoring the potential for topically-administered MGL inhibitors as a novel therapeutic target for the treatment of glaucoma.  相似文献   

8.
It is not yet clear if the endocannabinoid 2-arachidonoylglycerol (2-AG) is transported into cells through the same membrane transporter mediating the uptake of the other endogenous cannabinoid, anandamide (N-arachidonoylethanolamine, AEA), and whether this process (a) is regulated by cells and (b) limits 2-AG pharmacological actions. We have studied simultaneously the facilitated transport of [14C]AEA and [3H]2-AG into rat C6 glioma cells and found uptake mechanisms with different efficacies but similar affinities for the two compounds (Km 11.0 +/- 2.0 and 15.3 +/- 3.1 microM, Bmax 1.70 +/- 0.30 and 0.24 +/- 0.04 nmol.min-1.mg protein-1, respectively). Despite these similar Km values, 2-AG inhibits [14C]AEA uptake by cells at concentrations (Ki = 30.1 +/- 3.9 microM) significantly higher than those required to either 2-AG or AEA to inhibit [3H]2-AG uptake (Ki = 18.9 +/- 1.8 and 20.5 +/- 3.2 microM, respectively). Furthermore: (a) if C6 cells are incubated simultaneously with identical concentrations of [14C]AEA and [3H]2-AG, only the uptake of the latter compound is significantly decreased as compared to that observed with [3H]2-AG alone; (b) the uptake of [14C]AEA and [3H]2-AG by cells is inhibited with the same potency by AM404 (Ki = 7.5 +/- 0.7 and 10.2 +/- 1.7 microM, respectively) and linvanil (Ki = 9.5 +/- 0.7 and 6.4 +/- 1.2 microM, respectively), two inhibitors of the AEA membrane transporter; (c) nitric oxide (NO) donors enhance the uptake of both [14C]AEA and [3H]2-AG, thus suggesting that 2-AG action can be regulated through NO release; (d) AEA and 2-AG induce a weak release of NO that can be blocked by a CB1 cannabinoid receptor antagonist, and significantly enhanced in the presence of AM404 and linvanil, thus suggesting that transport into C6 cells limits the action of both endocannabinoids.  相似文献   

9.
Monoglyceride lipase (MGL) is required for efficient hydrolysis of the endocannabinoid 2-arachidonoylglyerol (2-AG) in the brain generating arachidonic acid (AA) and glycerol. This metabolic function makes MGL an interesting target for the treatment of neuroinflammation, since 2-AG exhibits anti-inflammatory properties and AA is a precursor for pro-inflammatory prostaglandins. Astrocytes are an important source of AA and 2-AG, and highly express MGL. In the present study, we dissected the distinct contribution of MGL in astrocytes on brain 2-AG and AA metabolism by generating a mouse model with genetic deletion of MGL specifically in astrocytes (MKOGFAP). MKOGFAP mice exhibit moderately increased 2-AG and reduced AA levels in brain. Minor accumulation of 2-AG in the brain of MKOGFAP mice does not cause cannabinoid receptor desensitization as previously observed in mice globally lacking MGL. Importantly, MKOGFAP mice exhibit reduced brain prostaglandin E2 and pro-inflammatory cytokine levels upon peripheral lipopolysaccharide (LPS) administration. These observations indicate that MGL-mediated degradation of 2-AG in astrocytes provides AA for prostaglandin synthesis promoting LPS-induced neuroinflammation. The beneficial effect of astrocyte-specific MGL-deficiency is not fully abrogated by the inverse cannabinoid receptor 1 agonist SR141716 (Rimonabant) suggesting that the anti-inflammatory effects are rather caused by reduced prostaglandin synthesis than by activation of cannabinoid receptors. In conclusion, our data demonstrate that MGL in astrocytes is an important regulator of 2-AG levels, AA availability, and neuroinflammation.  相似文献   

10.
Wu X  Han L  Zhang X  Li L  Jiang C  Qiu Y  Huang R  Xie B  Lin Z  Ren J  Fu J 《Journal of neurochemistry》2012,120(5):842-849
Endocannabinoids are neuromodulatory lipids that mediate the central and peripheral neural functions. Endocannabinoids have demonstrated their anti-proliferative, anti-angiogenic and pro-apoptotic properties in a series of studies. In the present study, we investigated the levels of two major endocannabinoids, anandamide and 2-arachidonylglycerol (2-AG), and their receptors, CB1 and CB2, in human low grade glioma (WHO grade I-II) tissues, high grade glioma (WHO grade III-IV) tissues, and non-tumor brain tissue controls. We also measured the expressions and activities of the enzymes responsible for anandamide and 2-AG biosynthesis and degradation, that is, N-acylphosphatidylethanolamine-hydrolysing phospholipase D (NAPE-PLD), fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MGL), and diacylglycerol lipase-alpha (DGL), in the same samples. Liquid chromatography-mass spectometry analysis showed that the levels of anandamide decreased, whereas the levels of 2-AG increased in glioma tissues, comparing to the non-tumor controls. The expression levels and activities of NAPE-PLD, FAAH and MGL also decreased in glioma tissues. Furthermore, quantitative-PCR analysis and western-blot analysis revealed that the expression levels of cananbinoid receptors, CB1 and CB2, were elevated in human glioma tissues. The changes of anandamide and 2-AG contents in different stages of gliomas may qualify them as the potential endogenous biomarkers for glial tumor malignancy.  相似文献   

11.
Monoacylglycerol lipase (MAGL) is one of the key enzymes of the endocannabinoid system (ECS). It hydrolyzes one of the major endocannabinoid, 2-arachidonoylglycerol (2-AG), an endogenous full agonist at G protein coupled cannabinoid receptors CB1 and CB2. Numerous studies showed that MGL inhibitors are potentially useful for the treatment of pain, inflammation, cancer and CNS disorders. These provocative findings suggested that pharmacological inhibition of MAGL function may confer significant therapeutic benefits. In this study, we presented hybrid ligand and structure-based approaches to obtain a novel set of virtual leads as MAGL inhibitors. The constraints used in this study, were Glide score, binding free energy estimates and ADME properties to screen the ZINC database, containing approximately 21 million compounds. A total of seven virtual hits were obtained, which showed significant binding affinity towards MAGL protein. Ligand, ZINC24092691 was employed in complex form with the protein MAGL, for molecular dynamics simulation study, because of its excellent glide score, binding free energy and ADME properties. The RMSD of ZINC24092691 was observed to stay at 0.1 nm (1 Å) in most of the trajectories, which further confirmed its ability to inhibit the protein MAGL. The hits were then evaluated for their ability to inhibit human MAGL. The compound ZINC24092691 displayed the noteworthy inhibitory activity reducing MAGL activity to 21.15% at 100 nM concentration, with an IC50 value of 10 nM.  相似文献   

12.
Delta(9)-tetrahydrocannabinol (THC), the psychoactive ingredient of marijuana, has useful medicinal properties but also undesirable side effects. The brain receptor for THC, CB(1), is also activated by the endogenous cannabinoids anandamide and 2-arachidonylglycerol (2-AG). Augmentation of endocannabinoid signaling by blockade of their metabolism may offer a more selective pharmacological approach compared with CB(1) agonists. Consistent with this premise, inhibitors of the anandamide-degrading enzyme fatty acid amide hydrolase (FAAH) produce analgesic and anxiolytic effects without cognitive defects. In contrast, we show that dual blockade of the endocannabinoid-degrading enzymes monoacylglycerol lipase (MAGL) and FAAH by selected organophosphorus agents leads to greater than ten-fold elevations in brain levels of both 2-AG and anandamide and to robust CB(1)-dependent behavioral effects that mirror those observed with CB(1) agonists. Arachidonic acid levels are decreased by the organophosphorus agents in amounts equivalent to elevations in 2-AG, which indicates that endocannabinoid and eicosanoid signaling pathways may be coordinately regulated in the brain.  相似文献   

13.
Enzymes for the biosynthesis and degradation of the endocannabinoid 2-arachidonoyl glycerol (2-AG) have been cloned and are the sn-1-selective-diacylglycerol lipases alpha and beta (DAGLalpha and beta) and the monoacylglycerol lipase (MAGL), respectively. Here, we used membranes from COS cells over-expressing recombinant human DAGLalpha to screen new synthetic substances as DAGLalpha inhibitors, and cytosolic fractions from wild-type COS cells to look for MAGL inhibitors. DAGLalpha and MAGL activities were assessed by using sn-1-[14C]-oleoyl-2-arachidonoyl-glycerol and 2-[3H]-arachidonoylglycerol as substrates, respectively. We screened known compounds as well as new phosphonate derivatives of oleic acid and fluoro-phosphinoyl esters of different length. Apart from the general lipase inhibitor tetrahydrolipstatin (orlistat) (IC50 approximately 60 nM), the most potent inhibitors of DAGLalpha were O-3640 [octadec-9-enoic acid-1-(fluoro-methyl-phosphoryloxymethyl)-propylester] (IC50 = 500 nM), and O-3841 [octadec-9-enoic acid 1-methoxymethyl-2-(fluoro-methyl-phosphinoyloxy)-ethyl ester] (IC50 = 160 nM). Apart from being almost inactive on MAGL, these two compounds showed high selectivity over rat liver triacylglycerol lipase, rat N-acylphosphatidyl-ethanolamine-selective phospholipase D (involved in anandamide biosynthesis), rat fatty acid amide hydrolase and human recombinant cannabinoid CB1 and CB2 receptors. Methylarachidonoyl-fluorophosphonate and the novel compound UP-101 [O-ethyl-O-p-nitro-phenyl oleylphosphonate] inhibited both DAGLalpha and MAGL with similar potencies (IC50 = 0.8-0.1 and 3.7-3.2 microM, respectively). Thus, we report the first potent and specific inhibitors of the biosynthesis of 2-AG that may be used as pharmacological tools to investigate the biological role of this endocannabinoid.  相似文献   

14.
Endogenous cannabinoid receptor ligands (endocannabinoids) may rescue neurons from glutamate excitotoxicity. As these substances also accumulate in cultured immature neurons following neuronal damage, elevated endocannabinoid concentrations may be interpreted as a putative neuroprotective response. However, it is not known how glutamatergic insults affect in vivo endocannabinoid homeostasis, i.e. N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), as well as other constituents of their lipid families, N-acylethanolamines (NAEs) and 2-monoacylglycerols (2-MAGs), respectively. Here we employed three in vivo neonatal rat models characterized by widespread neurodegeneration as a consequence of altered glutamatergic neurotransmission and assessed changes in endocannabinoid homeostasis. A 46-fold increase of cortical NAE concentrations (anandamide, 13-fold) was noted 24 h after intracerebral NMDA injection, while less severe insults triggered by mild concussive head trauma or NMDA receptor blockade produced a less pronounced NAE accumulation. By contrast, levels of 2-AG and other 2-MAGs were virtually unaffected by the insults employed, rendering it likely that key enzymes in biosynthetic pathways of the two different endocannabinoid structures are not equally associated to intracellular events that cause neuronal damage in vivo. Analysis of cannabinoid CB(1) receptor mRNA expression and binding capacity revealed that cortical subfields exhibited an up-regulation of these parameters following mild concussive head trauma and exposure to NMDA receptor blockade. This may suggest that mild to moderate brain injury may trigger elevated endocannabinoid activity via concomitant increase of anandamide levels, but not 2-AG, and CB(1) receptor density.  相似文献   

15.
The analgesic effects of cannabinoid ligands, mediated by CB1 receptors are well established. However, the side-effect profile of CB1 receptor ligands has necessitated the search for alternative cannabinoid-based approaches to analgesia. Herein, we review the current literature describing the impact of chronic pain states on the key components of the endocannabinoid receptor system, in terms of regionally restricted changes in receptor expression and levels of key metabolic enzymes that influence the local levels of the endocannabinoids. The evidence that spinal CB2 receptors have a novel role in the modulation of nociceptive processing in models of neuropathic pain, as well as in models of cancer pain and arthritis is discussed. Recent advances in our understanding of the spinal location of the key enzymes that regulate the levels of the endocannabinoid 2-AG are discussed alongside the outcomes of recent studies of the effects of inhibiting the catabolism of 2-AG in models of pain. The complexities of the enzymes capable of metabolizing both anandamide (AEA) and 2-AG have become increasingly apparent. More recently, it has come to light that some of the metabolites of AEA and 2-AG generated by cyclooxygenase-2, lipoxygenases and cytochrome P450 are biologically active and can either exacerbate or inhibit nociceptive signalling.  相似文献   

16.
Previous studies have shown an impairment of the endocannabinoid system in experimental models of Huntington's disease. In transgenic R6/2 mice, created by inserting exon 1 of the human IT15 mutant gene into the mouse, and exhibiting 150 CAG repeats as well as signs of HD, a progressive decline of CB(1) receptor expression and an abnormal sensitivity to CB(1) receptor stimulation have been reported. Here, by using isotope-dilution liquid chromatography-mass spectrometry, we investigated whether the levels of three endogenous neuroprotective substances, the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and palmitoylethanolamide (PEA), are altered in different brain areas of transgenic R6/2 versus wild-type (WT) mice at two different disease phases, i.e. in pre-symptomatic (4.5 weeks) or overtly symptomatic (10 weeks) R6/2 mice versus age-matched WT mice (n=4/group). Except for a approximately 25% decrease in 2-AG levels in the cortex, no significant changes in endocannabinoid and PEA levels were observed in pre-symptomatic R6/2 versus WT mice. By contrast, in symptomatic R6/2 mice the levels of all three compounds were significantly (approximately 30-60%) decreased in the striatum, whereas little changes were observed in the hippocampus, and a approximately 28% decrease of 2-AG levels, accompanied by a approximately 50% increase of AEA levels, was found in the cortex. These findings show that endocannabinoid levels change in a disease phase- and region-specific way in the brain of R6/2 mice and indicate that an impaired endocannabinoid system is a hallmark of symptomatic HD, thus suggesting that drugs inhibiting endocannabinoid degradation might be used to treat this disease.  相似文献   

17.
Microsomal epoxide hydrolase (EPHX1, EC 3.3.2.9) is a highly abundant α/β-hydrolase enzyme that is known for its catalytical epoxide hydrolase activity. A wide range of EPHX1 functions have been demonstrated including xenobiotic metabolism; however, characterization of its endogenous substrates is limited. In this study, we present evidence that EPHX1 metabolizes the abundant endocannabinoid 2-arachidonoylglycerol (2-AG) to free arachidonic acid (AA) and glycerol. The EPHX1 metabolism of 2-AG was demonstrated using commercially available EPHX1 microsomes as well as PC-3 cells overexpressing EPHX1. Conversely, EPHX1 siRNA markedly reduced the EPHX1 expression and 2-AG metabolism in HepG2 cells and LNCaP cells. A selective EPHX1 inhibitor, 10-hydroxystearamide, inhibited 2-AG metabolism and hydrolysis of a well-known EPHX1 substrate, cis-stilbene oxide. Among the inhibitors studied, a serine hydrolase inhibitor, methoxy-arachidonyl fluorophosphate, was the most potent inhibitor of 2-AG metabolism by EPHX1 microsomes. These results demonstrate that 2-AG is an endogenous substrate for EPHX1, a potential role of EPHX1 in the endocannabinoid signaling and a new AA biosynthetic pathway.  相似文献   

18.
Preimplantation embryo development to the blastocyst stage and uterine differentiation to the receptive state are prerequisites for embryo implantation. Burgeoning evidence suggests that endocannabinoid signaling is critical to early pregnancy events. Anandamide (N-arachidonoylethanolamine) and 2-AG (2-arachidonoylglycerol) are two major endocannabinoids that bind to and activate G-protein coupled cannabinoid receptors CB1 and CB2. We have previously shown that a physiological tone of anandamide is critical to preimplantation events in mice, since either silencing or amplification of anandamide signaling causes retarded development and oviductal retention of embryos via CB1, leading to deferred implantation and compromised pregnancy outcome. Whether 2-AG, which also influences many biological functions, has any effects on early pregnancy remains unknown. Furthermore, mechanisms by which differential uterine endocannabinoid gradients are established under changing pregnancy state is not clearly understood. We show here that 2-AG is present at levels one order of magnitude higher than those of anandamide in the mouse uterus, but with similar patterns as anandamide, i.e. lower levels at implantation sites and higher at interimplantation sites. We also provide evidence that region- and stage-specific uterine expression of N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD) and fatty acid amide hydrolase (FAAH), and sn-1-diacylglycerol (DAG) lipase alpha (DAGLalpha) and monoacylglycerol lipase (MAGL) for synthesis and hydrolysis of anandamide and 2-AG, respectively, creates endocannabinoid gradients conducive to implantation. Our genetic evidence suggests that FAAH is the major degrading enzyme for anandamide, whereas COX-2, MAGL and to some extent COX-1 participate in metabolizing 2-AG in the pregnant uterus. The results suggest that aberrant functioning of these pathways impacting uterine anandamide and/or 2-AG levels would compromise pregnancy outcome.  相似文献   

19.
Mounting evidence suggests that the endocannabinoid system regulates energy metabolism through direct effects on peripheral tissues as well as central effects that regulate appetite. Here we examined the effect of cannabinoid receptor 1 (CB1) signaling on insulin action in fat cells. We examined effects of the natural CB1 agonist, 2-Arachidonoylglycerol (2-AG), and the synthetic CB1 antagonist, SR141716, on insulin action in cultured adipocytes. We used translocation of glucose transporter GLUT4 to plasma membrane (PM) as a measure of insulin action. 2-AG activation of the CB1 receptor promoted insulin sensitivity whereas antagonism by SR141716 reduced insulin sensitivity. Neither drug affected GLUT4 translocation in the absence of insulin or with high doses of insulin. Consistent with these results we found that insulin-stimulated phosphorylation of the protein kinase Akt was increased by 2-AG, attenuated by SR141716, and unaffected in the absence of insulin or by addition of high-dose insulin. These data provide a functional and molecular link between the CB1 receptor and insulin sensitivity, because insulin-stimulated phosphorylation of Akt is required for GLUT4 translocation to the PM. The sensitizing effects of 2-AG were abrogated by SR141716 and Pertussis toxin, indicating that the effects are mediated by CB1 receptor. Importantly, neither 2-AG nor SR141716 alone or in combination with maximal dose of insulin had effects on GLUT4 translocation and Akt phosphorylation. These data are consistent with a model in which the endocannabinoid system sets the sensitivity of the insulin response in adipocytes rather than directly regulating the redistribution of GLUT4 or Akt phosphorylation.  相似文献   

20.
Moody JS  Kozak KR  Ji C  Marnett LJ 《Biochemistry》2001,40(4):861-866
The endogenous cannabinoid system appears to serve vascular, neurological, immunological, and reproductive functions. The identification of 2-arachidonylglycerol (2-AG) as an endogenous ligand for the central (CB1) and peripheral (CB2) cannabinoid receptors has prompted interest in enzymes capable of modifying or inactivating this endocannabinoid. Porcine leukocyte 12-liopoxygenase (12-LOX) oxygenated 2-AG to the 2-glyceryl ester of 12(S)-hydroperoxyeicosa-5,8,10,14-tetraenoic acid (12-HPETE-G). The k(cat)/K(M) for oxygenation of 2-AG was 40% of the value for arachidonic acid. In contrast to the results with leukocyte 12-LOX, 2-AG oxygenation was not detected with platelet-type 12-LOX. Among a series of structurally related arachidonyl esters, 2-AG served as the preferential substrate for leukocyte 12-LOX. 12(S)-Hydroxyeicosa-5,8,10,14-tetraenoic acid glyceryl ester (12-HETE-G) was produced following addition of 2-AG to COS-7 cells transiently transfected with leukocyte 12-LOX. These results demonstrate that leukocyte-type 12-LOX efficiently oxidizes 2-AG in vitro and in intact cells, suggesting a role for this oxygenase in the endogenous cannabinoid system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号