首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 585 毫秒
1.
To enhance glioblastoma (GB) marker discovery, we compared gene expression in GB with human normal brain (NB) by accessing the SAGE Genie web site and compared the results with published data. Nine GB and five NB SAGE libraries were analyzed using the Digital Gene Expression Displayer (DGED); the results of DGED were tested by Northern blot analysis and RT-PCR of arbitrarily selected genes. Review of available data from the articles on gene expression profiling by microarray-based hybridization showed as few as 35 overlapped genes with increased expression in GB. Some of them were identified in four articles, but most genes were identified in three or even in two investigations. Some differences were also found between SAGE results of GB analysis. The Digital Gene Expression Displayer approach revealed 676 genes differentially expressed in GB vs. NB with cutoff ratio: twofold change and P ≤ 05. Differential expression of selected genes obtained by DGED was confirmed by Northern analysis and RT-PCR. Altogether, only 105 of 955 genes presented in published investigations were among the genes obtained by DGED. Comparison of the results obtained by microarrays and SAGE is very complicated because the authors present only the most prominent differentially expressed genes. However, even available data give quite poor overlapping of genes revealed by microarrays. Some differences between results obtained by SAGE in different investigations can be explained by high dependence on the statistical methods used. As for now, the best solution to search for molecular tumor markers is to compare all available results and to select only those genes where significant expression in tumors combined with very low expression in normal tissues was reproduced in several articles. One hundred five differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of GBs. Some genes, encoded cell surface or extracellular proteins may be useful for targeting gliomas with antibody-based therapy. The text was submitted by the authors in English.  相似文献   

2.
3.
Under physiological conditions, transferrin receptor 2 (TfR2) is expressed in the liver and its balance is related to the cell cycle rather than to intracellular iron levels. We recently showed that TfR2 is highly expressed in glioblastoma cell lines. Here, we demonstrate that, in these cells, TfR2 appears to localize in lipid rafts, induces extracellular signal-regulated kinase 1/2 phosphorylation after transferrin binding, and contributes to cell proliferation, as shown by RNA silencing experiments. In vitro hypoxic conditions induce a significant TfR2 up-regulation, suggesting a role in tumor angiogenesis. As assessed by immunohistochemistry, the level of TfR2 expression in astrocytic tumors is related to histologic grade, with the highest expression observed in glioblastomas. The level of TfR2 expression represents a favorable prognostic factor, which is associated with the higher sensitivity to temozolomide of TfR2-positive tumor cells in vitro. The endothelial cells of glioblastoma vasculature also stain for TfR2, whereas those of the normal brain vessels do not. Importantly, TfR2 is expressed by the subpopulation of glioblastoma cells with properties of cancer-initiating cells. TfR2-positive glioblastoma cells retain their TfR2 expression on xenografting in immunodeficient mice. In conclusion, our observations demonstrate that TfR2 is a neoantigen for astrocytomas that seems attractive for developing target therapies.  相似文献   

4.
The von Hippel-Lindau tumor suppressor, pVHL, is a key player in one of the best characterized hypoxia signaling pathways, the VHL-hypoxia-inducible factor (VHL-HIF) pathway. To better understand the role of VHL in the hypoxia signaling pathways of tumor cells, we used serial analysis of gene expression (SAGE) to investigate hypoxia-regulated gene expression in renal carcinoma cells (786-0), with and without VHL. The gene expression profiles of the cancer cells were compared to SAGE profiles from normal renal proximal tubule cells grown under both normoxia and hypoxia. The data suggest that the role of VHL as a tumor suppressor may be more complex than previously thought. Further, the data reveal that renal carcinoma cells have evolved an alternative hypoxia signaling pathway(s) compared with normal renal cells. These alternative hypoxia pathways demonstrate VHL-dependent and VHL-independent regulation. The genes involved in such pathways include those with potential importance in the physiological and pathological regulation of tumor growth and angiogenesis. Some of the genes identified as showing overexpression in the cancer cells, particularly those encoding secreted or membrane-bound proteins, could be potential biomarkers for tumors or targets for rational therapeutics that are dependent on VHL status.  相似文献   

5.
6.
Glioblastoma are rapidly proliferating brain tumors in which hypoxia is readily recognizable, as indicated by focal or extensive necrosis and vascular proliferation, two independent diagnostic criteria for glioblastoma. Gene expression profiling of glioblastoma revealed a gene expression signature associated with hypoxia-regulated genes. The correlated gene set emerging from unsupervised analysis comprised known hypoxia-inducible genes involved in angiogenesis and inflammation such as VEGF and BIRC3, respectively. The relationship between hypoxia-modulated angiogenic genes and inflammatory genes was associated with outcome in our cohort of glioblastoma patients treated within prospective clinical trials of combined chemoradiotherapy. The hypoxia regulation of several new genes comprised in this cluster including ZNF395, TNFAIP3, and TREM1 was experimentally confirmed in glioma cell lines and primary monocytes exposed to hypoxia in vitro. Interestingly, the cluster seems to characterize differential response of tumor cells, stromal cells and the macrophage/microglia compartment to hypoxic conditions. Most genes classically associated with the inflammatory compartment are part of the NF-kappaB signaling pathway including TNFAIP3 and BIRC3 that have been shown to be involved in resistance to chemotherapy.Our results associate hypoxia-driven tumor response with inflammation in glioblastoma, hence underlining the importance of tumor-host interaction involving the inflammatory compartment.  相似文献   

7.
During prolonged cultivation, cell lines may lose a number of innate characteristics or acquire new ones. In this work, we compared growth and phenotypic characteristics of human glioblastoma А172 and Т98G cell lines received from the cell culture collection of the Research Institute of Influenza (St. Petersburg, Russia). The activity of genes encoding intracellular proteins that define belonging of these cell lines to mesenchymal type, as well as activity of several growth factor genes and extracellular matrix genes was evaluated. Cell lines A172 and T98G varied in morphology and surface markers expression. High level of mesenchymal markers CD90 and CD105, fibroblast activation protein, and tenascin C was detected for A172 cell line. Both cell lines expressed high level of α2 smooth muscle actin gene. Data demonstrating high activity of genes encoding major angiogenesis inductors (VEGF, FGF2(b), TGFβ1) and thrombospondin-1 in cell lines under study are in agreement with published data. Reduction of fetal serum content in culture medium from 10 to 5% increased the number of cells with CD73 and CD105 surface antigens in both cell lines. A172 and T98G cell lines maintain the main features of glioblastomas and therefore can be used as research objects in investigation of this type of neoplasms.  相似文献   

8.
9.
To enhance glioblastoma (GB) marker discovery we compared gene expression in GB with human normal brain (NB) by accessing SAGE Genie web site and compared obtained results with published data. Nine GB and five NB SAGE-libraries were analyzed using the Digital Gene Expression Displayer (DGED), the results of DGED were tested by Northern blot analysis and RT-PCR of arbitrary selected genes. Review of available data from the articles on gene expression profiling by microarray-based hybridization showed as few as 35 overlapped genes with increased expression in GB. Some of them were identified in four articles, but most genes in three or even in two investigations. There was found also some differences between SAGE results of GB analysis. Digital Gene Expression Displayer approach revealed 676 genes differentially expressed in GB vs. NB with cut-off ratio: twofold change and P < or = 0.05. Differential expression of selectedgenes obtained by DGED was confirmed by Northern analysis and RT-PCR. Altogether, only 105 of 955 genes presented in published investigations were among the genes obtained by DGED. Comparison of the results obtained by microarrays and SAGE is very complicated because authors present only the most prominent differentially expressed genes. However, even available data give quite poor overlapping of genes revealed by microarrays. Some differences between results obtained by SAGE in different investigations can be explained by high dependence on the statistical methods used. As for now, the best solution to search for molecular tumor markers is to compare all available results and to select only those genes, which significant expression in tumor combined with very low expression in normal tissues was reproduced in several articles. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of GBs. Some genes, encoded cell surface or extra-cellular proteins may be useful for targeting gliomas with antibody-based therapy.  相似文献   

10.
Glioblastoma is universally fatal because of its propensity for rapid recurrence due to highly migratory tumor cells. Unraveling the genomic complexity that underlies this migratory characteristic could provide therapeutic targets that would greatly complement current surgical therapy. Using multiple high-resolution genomic screening methods, we identified a single locus, adherens junctional associated protein 1 (AJAP1) on chromosome 1p36 that is lost or epigenetically silenced in many glioblastomas. We found AJAP1 expression absent or reduced in 86% and 100% of primary glioblastoma tumors and cell lines, respectively, and the loss of expression correlates with AJAP1 methylation. Restoration of AJAP1 gene expression by transfection or demethylation agents results in decreased tumor cell migration in glioblastoma cell lines. This work shows the significant loss of expression of AJAP1 in glioblastoma and provides evidence of its role in the highly migratory characteristic of these tumors.  相似文献   

11.
The genes that regulate the formation of blood vessels in adult tissues represent promising therapeutic targets because angiogenesis plays a role in many diseases, including cancer. We wished to develop a mouse model allowing characterization of gene function in adult angiogenic vasculature while minimizing effects on embryonic vasculature or adult quiescent vasculature. Here we describe a transgenic mouse model that allows expression of proteins in the endothelial cells of newly forming blood vessels in the adult using a selective retroviral gene delivery system. We generated transgenic mouse lines that express the TVA receptor for the RCAS avian-specific retrovirus from Flk1 gene regulatory elements that drive expression in proliferating endothelial cells. Several of these Flk1-TVA lines expressed TVA mRNA in the embryonic vasculature and TVA protein in new blood vessels growing into subcutaneous extracellular matrix implants in adult mice. In a Flk1-TVA line that was crossed with the MMTV-PyMT transgenic mammary tumor model, tumor endothelial cells also expressed the TVA protein. Furthermore, endothelial cells in extracellular matrix implants and the tumors of Flk1-TVA mice were susceptible to RCAS infection, as determined by expression of green fluorescent protein encoded by the virus. The Flk1-TVA mouse model in conjunction with the RCAS gene delivery system will be useful to study molecular mechanisms underlying adult forms of angiogenesis.  相似文献   

12.

Background

In order to improve our understanding of the molecular pathways that mediate tumor proliferation and angiogenesis, and to evaluate the biological response to anti-angiogenic therapy, we analyzed the changes in the protein profile of glioblastoma in response to treatment with recombinant human Platelet Factor 4-DLR mutated protein (PF4-DLR), an inhibitor of angiogenesis.

Methodology/Principal Findings

U87-derived experimental glioblastomas were grown in the brain of xenografted nude mice, treated with PF4-DLR, and processed for proteomic analysis. More than fifty proteins were differentially expressed in response to PF4-DLR treatment. Among them, integrin-linked kinase 1 (ILK1) signaling pathway was first down-regulated but then up-regulated after treatment for prolonged period. The activity of PF4-DLR can be increased by simultaneously treating mice orthotopically implanted with glioblastomas, with ILK1-specific siRNA. As ILK1 is related to malignant progression and a poor prognosis in various types of tumors, we measured ILK1 expression in human glioblatomas, astrocytomas and oligodendrogliomas, and found that it varied widely; however, a high level of ILK1 expression was correlated to a poor prognosis.

Conclusions/Significance

Our results suggest that identifying the molecular pathways induced by anti-angiogenic therapies may help the development of combinaatorial treatment strategies that increase the therapeutic efficacy of angiogenesis inhibitors by association with specific agents that disrupt signaling in tumor cells.  相似文献   

13.

Background

Gene expression studies related to cancer diagnosis and treatment are becoming more important. Housekeeping genes that are absolutely reliable are essential for these studies to normalize gene expression. An incorrect choice of housekeeping genes leads to interpretation errors of experimental results including evaluation and quantification of pathological gene expression. Here, we examined (a) the degree of regulation of GAPDH expression in human glioblastoma cells under hypoxic conditions in vitro in comparison to other housekeeping genes like β-actin, serving as experimental loading controls, (b) the potential use of GAPDH as a target for tumor therapeutic approaches and (c) differences in GAPDH expression between low-grade astrocytomas and glioblastomas, for which modest and severe hypoxia, respectively, have been previously demonstrated. GAPDH and β-actin expression was comparatively examined in vivo in human low-grade astrocytoma and glioblastoma on both protein and mRNA level, by Western blot and semiquantitative RT-PCR, respectively. Furthermore, the same proteins were determined in vitro in U373, U251 and GaMG human glioblastoma cells using the same methods. HIF-1α protein regulation under hypoxia was also determined on mRNA level in vitro in GaMG and on protein level in U251, U373 and GaMG cells.

Results

We observed no hypoxia-induced regulatory effect on GAPDH expression in the three glioblastoma cell lines studied in vitro. In addition, GAPDH expression was similar in patient tumor samples of low-grade astrocytoma and glioblastoma, suggesting a lack of hypoxic regulation in vivo.

Conclusion

GAPDH represents an optimal choice of a housekeeping gene and/or loading control to determine the expression of hypoxia induced genes at least in glioblastoma. Because of the lack of GAPDH regulation under hypoxia, this gene is not an attractive target for tumor therapeutic approaches in human glioblastoma.  相似文献   

14.
Intercellular communication and carcinogenesis   总被引:32,自引:0,他引:32  
Two types of intercellular communication (humoral and cell contact-mediated) are involved in control of cellular function in multicellular organisms, both of them mediated by membrane-embedded proteins. Involvement of aberrant humoral communication in carcinogenesis has been well documented and genes coding for some growth factors and their receptors have been classified as oncogenes. More recently, cell contact-mediated communication has been found to have an important role in carcinogenesis, and some genes coding for proteins involved in this type of communication appear to form a family of tumor-suppressor genes. Both homologous (among normal or (pre-)cancerous cells) as well as heterologous (between normal and (pre)cancerous cells) communications appear to play important roles in cell growth control. Gap junctional intercellular communication (GJIC) is the only means by which multicellular organisms can exchange low molecular weight signals directly from within one cell to the interior of neighboring cells. GJIC is altered by many tumor-promoting agents and in many human and rodent tumors. We have recently shown that liver tumor-promoting agents inhibit GJIC in the rat liver in vivo. Molecular mechanisms which could lead to aberrant GJIC include: (1) mutation of connexin genes; (2) reduced and/or aberrant expression of connexin mRNA; (3) aberrant localization of connexin proteins, i.e., intracytoplasmic rather than in the cytoplasmic membrane; and (4) modulation of connexin functions by other proteins, such as those involved in extracellular matrix and cell adhesion. Whilst mutations of the cx 32 gene appear to be rare in tumors, cx 37 gene mutations have been reported in a mouse lung tumor cell line. Our results suggest that aberrant connexin localization is rather common in cancer cells and that possible molecular mechanisms include aberrant phosphorylation of connexin proteins and lack of cell adhesion molecules. Studies on transfection of connexin genes into tumor cells suggest that certain connexin genes (e.g., cx 26, cx 43 and cx 32) act as tumor-suppressor genes.  相似文献   

15.
16.
Many cell lines derived from tumors as well as transformed cell lines are far more sensitive to V-ATPase inhibitors than normal counterparts. The molecular mechanisms underlying these differences in sensitivity are not known. Using global gene expression data, we show that the most sensitive responses to HeLa cells to low doses of V-ATPase inhibitors involve genes responsive to decreasing intracellular iron or decreasing cholesterol and that sensitivity to iron uptake is an important determinant of V-ATPase sensitivity in several cancer cell lines. One of the most sensitive cell lines, melanoma derived SK-Mel-5, over-expresses the iron efflux transporter ferroportin and has decreased expression of proteins involved in iron uptake, suggesting that it actively suppresses cytoplasmic iron. SK-Mel-5 cells have increased production of reactive oxygen species and may be seeking to limit additional production of ROS by iron.  相似文献   

17.
18.
19.
TH Hsieh  CF Tsai  CY Hsu  PL Kuo  E Hsi  JL Suen  CH Hung  JN Lee  CY Chai  SC Wang  EM Tsai 《PloS one》2012,7(8):e42750
Environmental hormones play important roles in regulating the expression of genes involved in cell proliferation, drug resistance, and breast cancer risk; however, their precise role in human breast cancer cells during cancer progression remains unclear. To elucidate the effect of the most widely used industrial phthalate, n-butyl benzyl phthalate (BBP), on cancer progression, we evaluated the results of BBP treatment using a whole human genome cDNA microarray and MetaCore software and selected candidate genes whose expression was changed by more than ten-fold by BBP compared with controls to analyze the signaling pathways in human breast cancer initiating cells (R2d). A total of 473 genes were upregulated, and 468 were downregulated. Most of these genes are involved in proliferation, epithelial-mesenchymal transition, and angiogenesis signaling. BBP induced the viability, invasion and migration, and tube formation in vitro, and Matrigel plug angiogenesis in vivo of R2d and MCF-7. Furthermore, the viability and invasion and migration of these cell lines following BBP treatment was reduced by transfection with a small interfering RNA targeting the mRNA for lymphoid enhancer-binding factor 1; notably, the altered expression of this gene consistently differentiated tumors expressing genes involved in proliferation, epithelial-mesenchymal transition, and angiogenesis. These findings contribute to our understanding of the molecular impact of the environmental hormone BBP and suggest possible strategies for preventing and treating human breast cancer.  相似文献   

20.
Marko NF  Toms SA  Barnett GH  Weil R 《Genomics》2008,91(5):395-406
We used microarray analysis to investigate associations between genotypic expression profiles and survival phenotypes in patients with primary glioblastoma (GBM). Tumor samples from 7 long-term glioblastoma survivors (>24 months) and 13 short-term survivors (<9 months) were analyzed to detect differential patterns of gene expression between these groups and to identify genotypic subclasses of glioblastomas that correlate with survival phenotypes. Five unsupervised and three supervised clustering algorithms consistently and accurately grouped the tumors into genotypic subgroups corresponding to the two clinical survival phenotypes. Three unique prospective mathematical classification algorithms were subsequently trained to use expression data to stratify unknown glioblastomas between survival groups and performed this task with 100% accuracy in validation studies. A set of 1478 genes with significant differential expression (p<0.01) between long-term and short-term survivors was identified, and additional mathematical filtering was used to isolate a 43-gene "fingerprint" that distinguished survival phenotypes. Differential regulation of a subset of these genes was confirmed using RT-PCR. Gene ontology analysis of the fingerprint demonstrated pathophysiologic functions for the gene products that are consistent with current models of tumor biology, suggesting that differential expression of these genes may contribute etiologically to the observed differences in survival. These results demonstrate that unique expression profiles characterize genotypic subsets of primary GBMs associated with differential survival phenotypes, and these profiles can be used in a prospective fashion to assign unknown tumors to survival groups. Future efforts will focus on building more robust classifiers and identifying additional subclasses of gliomas with phenotypic significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号