首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
亲和介质及溶液条件对蛋白质溶液中内毒素去除的影响   总被引:1,自引:0,他引:1  
生物制品中内毒素的去除是一项十分重要的工作。为了更好地去除各种生物制品中的内毒素,采用合成的多粘菌素B琼脂糖亲和介质,通过静态吸附的方法去除蛋白质溶液中的内毒素。重点考察了介质的间臂长度、配基密度以及各种溶液条件(pH值、盐种类和浓度、蛋白质种类和浓度、内毒素浓度、添加剂等)对内毒素去除率及蛋白质回收率的影响。分别采用动态浊度法和Lowry法检测内毒素含量和蛋白质浓度。结果表明该介质具有载量高、去除速度快、去除率高、可重复使用的特点。此外,配基密度、pH值、盐浓度和蛋白质特性(等电点和疏水性)对内毒素去除效果均有重要影响。在优化的条件下,血红蛋白、人血清白蛋白和溶菌酶的回收率分别达到87.2%、73.4%和97.3%,相应的内毒素去除率分别达到99.8%、97.9%和99.7%。阐明了各种因素对内毒素去除率和蛋白质回收率的影响规律,为生物制品中内毒素的高效去除提供了参考。  相似文献   

2.
Lipopolysaccharide (LPS) is a major component of the outer membrane of Gram-negative bacteria. It has strong toxicity and might cause sepsis or septic shock. Thus early detection of LPS and neutralization of LPS toxicity are required. We obtained several new LPS-binding peptides using a phage display method. We synthesized 3 of these peptides and analyzed their binding affinity and capacity to LPS. One of these peptides, named Li5-001, showed high binding affinity to LPS and lipid A; the Kd values were 10 and 1 nM, respectively. Li5-001 showed a high binding capacity to LPS, and was estimated to bind 130 ng LPS/mg, which is higher than that of polymyxin B (80 ng LPS/mg); however, its LPS-neutralizing activity was low. Li5-001 coupled with beads will be useful for eliminating endotoxin contamination from pharmaceuticals. Its low LPS-neutralizing activity allows to be used in the Limulus amebocyte lysate test without eluting LPS from the Li5-001 coupled beads.  相似文献   

3.
A synthetic adsorbent of crystalline calcium silicate hydrate, the product LRA by Advanced Minerals Corp., has been studied for endotoxin removal from aqueous solutions. This adsorbent removes endotoxin effectively, and the removal is greatly enhanced by the presence of an electrolyte such as NaCl, Tris-HCl, or Na2HPO4. It has an endotoxin removal capacity as high as 6 million endotoxin units (EU) per gram. Its endotoxin removal kinetics is fast, and for instance, over 99.9% endotoxin in a 5000 EU/mL solution was removed by mixing for 2 min at an adsorbent usage of 10 g/L. Using the chromatographic column method to treat a 5000 EU/mL solution, an endotoxin log-reduction factor of 6.2 was achieved with a single pass. This adsorbent also demonstrated significantly better performance when compared to many commonly used endotoxin removal agents, such as ActiClean Etox Endotoxin Removal Resin, Affi-Prep Polymyxin Support, Detroxi-Gel Endotoxin Removing Gel, Q Sepharose Fast Flow Media, and Sigma Endotoxin Removal Solution. Furthermore, it demonstrated a high selective removal of endotoxin from a solution of lambda DNA. This adsorbent provides opportunities for developing disposable, scaleable, and cost-effective methods for endotoxin reduction in many biotechnological and pharmaceutical processes.  相似文献   

4.
Endotoxic shock, a syndrome characterized by deranged hemodynamics, coagulation abnormalities, and multiple system organ failure is caused by the release into the circulation of lipopolysaccharide (LPS), the structurally diverse component of Gram-negative bacterial outer membranes, and is responsible for 60% mortality in humans. Polymyxin B (PMB), a cyclic, cationic peptide antibiotic, neutralizes endotoxin but induces severe side effects in the process. The potent endotoxin neutralizing ability of PMB, however, offers possibilities for designing non-toxic therapeutic agents for combating endotoxicosis. Amongst the numerous approaches for combating endotoxic shock, peptide mediated neutralization of LPS seems to be the most attractive one. The precise mode of binding of PMB to LPS and the structural features involved therein have been elucidated only recently using a variety of biophysical approaches. These suggest that efficient neutralization of endotoxin by PMB is not achieved by mere binding to LPS but requires its sequestration from the membrane. Incorporation of this feature into the design of endotoxin neutralizing peptides should lead to the development of effective antidotes for endotoxic shock.  相似文献   

5.
Polymyxin B binds to anandamide and inhibits its cytotoxic effect   总被引:7,自引:0,他引:7  
Anandamide (ANA), an endogenous cannabinoid, can be generated by activated macrophages during endotoxin shock and is thought to be a paracrine contributor to hypotension. We discovered that ANA in saline/ethanol solution and in serum was efficiently adsorbed in a polymyxin B (PMB)-immobilized beads column and eluted with ethanol. We confirmed the direct binding of PMB to ANA by using surface plasmon resonance. The adsorption of ANA by PMB may abolish the diverse effects of ANA such as hypotension, immunosuppression, and cytotoxicity, and may suggest a new therapeutic strategy for endotoxin shock.  相似文献   

6.
Endotoxin is a type of pyrogen that can be found in Gram-negative bacteria. Endotoxin can form a stable interaction with other biomolecules thus making its removal difficult especially during the production of biopharmaceutical drugs. The prevention of endotoxins from contaminating biopharmaceutical products is paramount as endotoxin contamination, even in small quantities, can result in fever, inflammation, sepsis, tissue damage and even lead to death. Highly sensitive and accurate detection of endotoxins are keys in the development of biopharmaceutical products derived from Gram-negative bacteria. It will facilitate the study of the intermolecular interaction of an endotoxin with other biomolecules, hence the selection of appropriate endotoxin removal strategies. Currently, most researchers rely on the conventional LAL-based endotoxin detection method. However, new methods have been and are being developed to overcome the problems associated with the LAL-based method. This review paper highlights the current research trends in endotoxin detection from conventional methods to newly developed biosensors. Additionally, it also provides an overview of the use of electron microscopy, dynamic light scattering (DLS), fluorescence resonance energy transfer (FRET) and docking programs in the endotoxin–protein analysis.  相似文献   

7.
Endotoxin is an unwanted by product of recombinant proteins purified from Escherichia coli. The inherent toxicity of endotoxins makes their removal an important step for the proteins' application in several biological assays and for safe parenteral administration. The method described in this paper is a one-step protocol which is effective at removing tightly bound endotoxin from over-expressed tagged proteins in E. coli. We combined affinity chromatography with a non-ionic detergent washing step, to remove most of the endotoxin contaminants from the end product. An endotoxin reduction of less than 4 to 0.2 EU mg(-1) was achieved with protein recovery close to a yield 100%. As this new protocol requires only one step to simultaneously purify tagged proteins and eliminate endotoxins, it represents a substantial advantage in time, effort, and expense.  相似文献   

8.
Tsubery H  Ofek I  Cohen S  Fridkin M 《Biochemistry》2000,39(39):11837-11844
The Gram-negative bacterial endotoxin lipopolysaccharide (LPS) is a major inducer of sepsis. The natural cyclic peptide polymyxin B (PMB) is a potent antimicrobial agent, albeit highly toxic, by virtue of its capacity to neutralize the devastating effects of LPS. However, the exact mode of association between PMB and LPS is not clear. In this study, we have synthesized polymyxin B nonapeptide, the LPS-binding cyclic domain of PMB, and its enantiomeric analogue and studied several parameters related to their interaction with LPS and their capacity to sensitize Gram-negative bacteria toward hydrophobic antibiotics. The results suggest that whereas the binding of the two enantiomeric peptides to E. coli and to E. coli LPS is rather similar, functional association with the bacterial cell is stereospecific. Thus, the L-enantiomer is capable of synergism with the hydrophobic antimicrobial drugs novobiocin and erythromycin, whereas the D-enantiomer is devoid of such activity. The potential of understanding and consequently utilizing the PMB-LPS association for novel, nontoxic PMB-derived drugs is discussed.  相似文献   

9.
The antibiotic polymyxin B modulates P2X7 receptor function   总被引:3,自引:0,他引:3  
The natural peptide polymyxin B (PMB) is a well-known and potent antibiotic that binds and neutralizes bacterial endotoxin (LPS), thus preventing its noxious effects among LPS-mediated endotoxin shock in animal models. We have investigated the effect of PMB on responses mediated by the P2X(7)R in HEK293 and K562 cells transfected with P2X(7) cDNA and in mouse and human macrophages. In addition, in view of the potential exploitation of P2X(7)-directed agonists in antitumor therapy, we also investigated the effect of PMB in B lymphocytes from patients affected by chronic lymphocytic leukemia. PMB, at an optimal concentration dependent on the given cell type, greatly potentiated the effect of nucleotide-mediated P2X(7) stimulation. In particular, ATP-mediated Ca(2+) influx, plasma membrane permeabilization, and cytotoxicity were enhanced to an extent that, in the presence of PMB, cells were killed by otherwise ineffective nucleotide concentrations. The synergistic effect due to the combined application of ATP and PMB was prevented by incubation with the irreversible P2X blocker oxidized ATP (oATP), but not with the reversible antagonist 1-(N,O-bis(1,5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl)-4-phenilpiperazine (KN-62). Cells lacking P2X(7) were fully insensitive to the combined stimulation with PMB and ATP. Furthermore, PMB at the concentrations used had no untoward effects on cell viability. These results point to PMB as a useful tool for the modulation of P2X(7)R function and suggest that care should be used in the evaluation of ATP-stimulated immune cell responses in the presence of PMB as they may not solely be affected by removal of contaminating LPS.  相似文献   

10.
The peptide antibiotic Polymyxin B (PMB) binds to bacterial endotoxin (lipopolysaccharide, LPS). We prepared covalent conjugates of PMB and horseradish peroxidase (HRP) by periodation of HRP-linked oligosaccharides followed by direct condensation with PMB. In addition we prepared monoclonal antibodies (Mabs) to PMB. The PMB-HRP conjugates and anti-PMB Mabs were used to study in ELISA the binding of PMB to LPS from Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. In addition, PMB-HRP was used to quantify lipid A in ELISA, and to stain gram-negative bacteria histochemically. For the study of PMB-LPS interaction, PMB-HRP proved to be superior to the anti-PMB Mabs. PMB-HRP conjugates are useful general probes to detect or measure lipid A and LPS of various species using very simple methods and to stain bacteria, and they may obviate the need for many specific antisera. Thus, PMB-HRP conjugates are useful probes for endotoxin research.  相似文献   

11.
BACKGROUND: The triggering of cellular responses during endotoxic shock is initiated for the binding of endotoxin (lipopolysaccharide; LPS) to the cell surface. Kupffer and endothelial liver cells, involved in the removal of endotoxin from blood circulation, show in vitro a rapid response to LPS in the absence of serum. METHODS: A double-labeling fluorescent assay was designed to evaluate the binding properties of Escherichia coli O111:B4 LPS to individual endothelial and Kupffer cells in suspension, where both populations occurred in the same relative proportion as in liver. After immunolabeling of the Kupffer cell population with the monoclonal antibody ED1 conjugated to R. phycoerythrin, the binding characteristics of LPS labeled with fluorescein to both endothelial and Kupffer cells were simultaneously studied by flow cytometry in serum-free conditions. RESULTS: Specific and saturable binding of endotoxin was observed with both populations, showing properties of a receptor-mediated process. The Kupffer cell population showed a faster capacity and a higher affinity for LPS binding. The Hill coefficients indicated positive cooperativity in the LPS interaction with both populations. CONCLUSIONS: Specific endotoxin binding to liver sinusoidal cells occurs in a serum-independent manner, particularly at high LPS concentrations. Flow cytometry is a fast, precise, and efficient technique to evaluate the simultaneous interaction of a ligand with two different cell types.  相似文献   

12.
The synthesis and use of a zirconia-based, alkali-stable strong anion-exchange stationary phase are described for the removal of pyrogenic lipopolysaccharides (LPS) from insulin. The strong anion-exchange material is produced by deposition of polyethyleneimine (PEI) onto porous zirconia particles, followed by cross-linking with a novel reagent, 1,2-bis-(2-iodoethoxy) ethane, and quaternization with iodomethane. Physical characterization of the chromatographic support shows that it has an ion-exchange capacity of 0.6 mmol/g, and 82% of the amine sites on the surface are in quaternized form. Isocratic elution of small benzoic acid derivatives shows good column efficiency. The two primary virtues of this material are its chemical stability under alkali conditions (up to pH 13) and its lower hydrophobicity compared to previously described alkali-stable PEI-coated zirconia supports cross-linked with 1,10-diiododecane. Using this new zirconia-based phase, a purification protocol is developed for the efficient removal of Escherichia coli 0111:B4 LPS from bovine insulin samples. An endotoxin clearance rate of up to 1.3 x 10(8) was attained. Endotoxin levels were reduced to less than 5 endotoxin units/ml even at initial contamination levels as high as 5.0 x 10(6) endotoxin units/ml. Furthermore, endotoxin adsorbed to the porous zirconia column may be easily removed (depyrogenated) using alkali for repeated purification cycles.  相似文献   

13.
Many commercially available recombinant proteins are produced in Escherichia coli, and most suppliers guarantee contamination levels of less than 1 endotoxin unit (EU). When we analysed commercially available proteins for their endotoxin content, we found contamination levels in the same range as generally stated in the data sheets, but also some that were higher. To analyse whether these low levels of contamination have an effect on immune cells, we stimulated the monocytic cell line THP-1, primary human monocytes, in vitro differentiated human monocyte-derived dendritic cells, and primary human CD1c+ dendritic cells (DCs) with very low concentrations of lipopolysaccharide (LPS; ranging from 0.002–2 ng/ml). We show that CD1c+ DCs especially can be activated by minimal amounts of LPS, equivalent to the levels of endotoxin contamination we detected in some commercially available proteins. Notably, the enhanced endotoxin sensitivity of CD1c+ DCs was closely correlated with high CD14 expression levels observed in CD1c+ DCs that had been maintained in cell culture medium for 24 hours. When working with cells that are particularly sensitive to LPS, even low endotoxin contamination may generate erroneous data. We therefore recommend that recombinant proteins be thoroughly screened for endotoxin contamination using the limulus amebocyte lysate test, fluorescence-based assays, or a luciferase based NF-κB reporter assay involving highly LPS-sensitive cells overexpressing TLR4, MD-2 and CD14.  相似文献   

14.
Removal of endotoxins from recombinant proteins is a critical and challenging step in the preparation of injectable therapeutics, as endotoxin is a natural component of the bacterial expression systems widely used to manufacture therapeutic proteins. In this study we investigated various parameters affecting anion exchange chromatography to selectively remove endotoxins from therapeutic proteins. NY-ESO-1, Melan-A, and SSX-2 are different recombinant proteins used in this study, all of them are cancer antigens currently developed as potential immunotherapeutic agents. We found that by using a commercially available Q XL resin in a flow-through mode, endotoxin could be effectively removed from these proteins while maintaining very acceptable protein yields. The ratio of resin volume to endotoxin load was analyzed to determine the endotoxin binding capacity of the resin. In our hands at least 900,000 endotoxin units (EU) could be loaded per ml of Q XL resin. Solution conductivity could be increased to 20 mS/cm to minimize protein loss by weakening protein-resin attraction, and pH could be increased to enhance endotoxin removal by weakening endotoxin-protein attraction. Endotoxin levels were ultimately decreased to below 0.5 EU per microg of protein, an over 2000-fold reduction in this single step. A successful scale-up of these processes in which column volume was increased 100-fold was performed under cGMP conditions with over 80% protein recovery.  相似文献   

15.
Endotoxin tolerance is defined as a reduced capacity of a cell to respond endotoxin (lipopolysaccharide, LPS) challenge after an initial encounter with endotoxin in advance. The body becomes tolerant to subsequent challenge with a lethal dose of endotoxin and cytokines release and cell/tissue damage induced by inflammatory reaction are significantly reduced in the state of endotoxin tolerance. The main characteristics of endotoxin tolerance are downregulation of inflammatory mediators such as tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and C-X-C motif chemokine 10 (CXCL10) and upregulation of anti-inflammatory cytokines such as IL-10 and transforming growth factor β (TGF-β). Therefore, endotoxin tolerance is often regarded as the regulatory mechanism of the host against excessive inflammation. Endotoxin tolerance is a complex pathophysiological process and involved in multiple cellular signal pathways, receptor alterations, and biological molecules. However, the exact mechanism remains elusive up to date. To better understand the underlying cellular and molecular mechanisms of endotoxin tolerance, it is crucial to investigate the comprehensive cellular signal pathways, signaling proteins, cell surface molecules, proinflammatory and anti-inflammatory cytokines, and other mediators. Endotoxin tolerance plays an important role in reducing the mortality of sepsis, endotoxin shock, and other endotoxin-related diseases. Recent reports indicated that endotoxin tolerance is also related to other diseases such as cystic fibrosis, acute coronary syndrome, liver ischemia-reperfusion injury, and cancer. The aim of this review is to discuss the recent advances in endotoxin tolerance mainly based on the cellular and molecular mechanisms by outline the current state of the knowledge of the involvement of the toll-like receptor 4 (TLR4) signaling pathways, negative regulate factor, microRNAs, apoptosis, chromatin modification, and gene reprogramming of immune cells in endotoxin tolerance. We hope to provide a new idea and scientific basis for the rational treatment of endotoxin-related diseases such as endotoxemia, sepsis, and endotoxin shock clinically.  相似文献   

16.
Endotoxin, which is also known as lipopolysaccharide (LPS), is a marker for intruding gram-negative pathogens. It is essential to detect endotoxin quickly and sensitively in a complex milieu. A new flow cytometry (FCM)-based magnetic aptasensor assay that employs two endotoxin-binding aptamers and magnetic beads has been developed to detect endotoxin. The endotoxin-conjugated sandwich complex on magnetic beads was observed by scanning confocal laser microscopy. The resulting magnetic aptasensor rapidly detected (<1 min) endotoxin within a broad dynamic detection range of 10−8 to 100 mg/ml in the presence of bovine serum albumin (BSA), RNA, sucrose, and glucose, which are most likely to coexist with endotoxin in the majority of biological liquids. Only 2 μl of magnetic aptasensor was required to quantify the endotoxin solution. Furthermore, the magnetic aptasensor could be regenerated seven times and still presented an outstanding response to the endotoxin solution. Therefore, the magnetic aptasensor exhibited high sensitivity, selectivity, and reproducibility, thereby serving as a powerful tool for the quality control and high-throughput detection of endotoxin in the food and pharmaceutical industries.  相似文献   

17.
The ability of C fragments to induce IL-1 production in human monocytes was examined by using various approaches to carefully exclude the role of contaminating endotoxin. The presence of IL-1 activity in monocyte supernatants and lysates was assayed by the augmentation of PHA-induced proliferation of murine thymocytes. SRBC were opsonized with IgM rabbit antibodies and various human C components to prepare EAC reagents that contained less than 25 pg LPS/ml of EAC at 5 x 10(8) cells/ml. EAC1q, EAC4b, EAC4b2aoxy, EAC4b2aoxy C3b, EAC4b2aoxyC3bi, and EAC4b2aoxyC3d all failed to induce IL-1 production when incubated at 10- to 100-fold excess with adherent human monocytes. Similarly, LPS-free purified C3a, C5a, and C5a des Arg all showed no IL-1-inducing activities at concentrations up to 25 micrograms/ml. However, the same C5a preparations were active on human monocytes in the induction of chemotaxis, and C3a and C5a both induced skin-blueing in guinea pigs. Fragment Ba and Bb preparations purified by gel filtration chromatography contained approximately 100 pg LPS/micrograms Ba or Bb. These Ba and Bb preparations at 10 and 50 micrograms/ml, respectively, induced IL-1 production in the presence of 5 micrograms/ml polymyxin B (PMB). However, Ba and Bb preparations purified by affinity chromatography and HPLC contained lower levels of endotoxin contamination and displayed IL-1-inducing activities at Ba and Bb concentrations of 50 and 100 micrograms/ml, respectively, that were almost completely inhibited by PMB. To explore further the role of contaminating endotoxin, a Bb preparation was adsorbed with PMB-4B in the presence of a dialyzable detergent to remove LPS bound to the Bb. This LPS-free Bb preparation failed to induce IL-1 production while maintaining intact enzymatic activities. These results indicate that various solid phase or soluble C fragments, including C3b, iC3b, C3d, C3a, C5a, Ba or Bb do not induce IL-1 production in human monocytes in the absence of contaminating endotoxin.  相似文献   

18.
In biotechnology, endotoxin (LPS) removal from recombinant proteins is a critical and challenging step in the preparation of injectable therapeutics, as endotoxin is a natural component of bacterial expression systems widely used to manufacture therapeutic proteins. The viability of large‐scale industrial production of recombinant biomolecules of pharmaceutical interest significantly depends on the separation and purification techniques used. The aim of this work was to evaluate the use of aqueous two‐phase micellar system (ATPMS) for endotoxin removal from preparations containing recombinant proteins of pharmaceutical interest, such as green fluorescent protein (GFPuv). Partition assays were carried out initially using pure LPS, and afterwards in the presence of E. coli cell lysate. The ATPMS technology proved to be effective in GFPuv recovery, preferentially into the micelle‐poor phase (KGFPuv < 1.00), and LPS removal into the micelle‐rich phase (%REMLPS > 98.00%). Therefore, this system can be exploited as the first step for purification in biotechnology processes for removal of higher LPS concentrations. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

19.
20.
High-performance liquid affinity chromatography is a powerful method for the purification of biological compounds owing to its specificity, rapidity and high resolution. In our laboratory, we develop chromatographic supports based on porous silica beads. However, in order to minimize non-specific interactions between the inorganic surface and proteins in aqueous solution, the silica beads are coated with modified dextran. As previously reported, many affinity ligands can be covalently grafted onto dextran-coated silica. In this study, N-acetylneuramic acid, which belongs to the sialic acid family and is present in immunoglobulin G (IgG) epitopes, is used as an active ligand. The interactions of this affinity support and IgG subclasses are analyzed. This immobilized ligand enables purification of IgG3 antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号