首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fomena  A.  Bouix  G. 《Systematic parasitology》1997,37(3):161-178
In Africa, about a hundred species of Myxosporea are known to infest fishes in various countries. Species of nine genera have been described in freshwater fishes: Myxidium, Sphaerospora, Myxobilatus, Myxobolus, Thelohanellus, Unicauda, Henneguya, Chloromyxum and Kudoa. In the present note, we propose a key to the species infecting freshwater fishes. A systematic revision of some species is given. A list of different species, their hosts and their geographical distribution are also presented.  相似文献   

2.
New species of the myxosporidian genus Chloromyxum is described from salmonid fishes collected in Karelia, Norway and Finland in 1992-1998.  相似文献   

3.
Four new species of Ceratomyxa were found during parasitological studies of fish caught in shallow areas of Peter the Great Bay, Russia. Two of them (C. aspera n. sp. and C. durusa n. sp.) were found in the gall bladders of the flounders Limanda aspera and L. herzensteini. The third species (C. azonusi n. sp.) infected the gall bladder of the greenling Pleurogrammus azonus, and the fourth (C. lianoides n. sp.) was found in the gall bladder of Stichaeus grigorjewi. Ceratomyxa spp. have not been previously described from P. azonus or S. grigorjewi.  相似文献   

4.
Drinking in Antarctic fishes   总被引:1,自引:0,他引:1  
David Petzel 《Polar Biology》2005,28(10):763-768
Drinking rates have never been measured in Antarctic fish. Drinking rates were measured in four species of notothenioid fish, including a hemoglobinless icefish, found in the near-freezing waters of the Ross Sea of the Southern Ocean. All of the fish, with the exception of the icefish, had low drinking rates and high serum osmolalities relative to temperate seawater fish. The icefish had significantly higher drinking rates and serum osmolalities relative to the Antarctic fishes containing hemoglobin, including Trematomus bernacchii. Warm acclimation of T. bernacchii, from −1.5°C to +4°C for 4 weeks, significantly increased their drinking rates 4.6-fold, significantly decreased their serum and intestinal osmolality by 11% and 12%, respectively, relative to cold-acclimated fish. These results indicate that increased drinking rates in Antarctic fish at elevated temperatures are involved in maintaining a lower serum osmolality.  相似文献   

5.
This is the first report of the myxosporean Ortholinea orientalis from Atlantic herring Clupea harrengus. It infects the kidney tubules and previously was known from Pacific herring Clupea pallasii and navaga Eleginus navaga in the White Sea and North Pacific Ocean. This is also the first report of the coccidian Eimeria raibauti from Norway pout Trisopterus esmarkii. It infects the epithelium of the pyloric ceca and previously was known only from poorcod Trisopterus minutus in the Mediterranean Sea. The new records are both from the northern North Sea.  相似文献   

6.
Microtubule-associated proteins from Antarctic fishes   总被引:1,自引:0,他引:1  
Microtubules and presumptive microtubule-associated proteins (MAPs) were isolated from the brain tissues of four Antarctic fishes (Notothenia gibberifrons, N. coriiceps neglecta, Chaenocephalus aceratus, and a Chionodraco sp.) by means of a taxol-dependent, microtubule-affinity procedure (cf. Vallee: Journal of Cell Biology 92:435-442, 1982). MAPs from these fishes were similar to each other in electrophoretic pattern. Prominent in each preparation were proteins in the molecular weight ranges 410,000-430,000, 220,000-280,000, 140,000-155,000, 85,000-95,000, 40,000-45,000, and 32,000-34,000. The surfaces of MAP-rich microtubules were decorated by numerous filamentous projections. Exposure to elevated ionic strength released the MAPs from the microtubules and also removed the filamentous projections. Addition of fish MAPs to subcritical concentrations of fish tubulins at 0-5 degrees C induced the assembly of microtubules. Both the rate and the extent of this assembly increased with increasing concentrations of the MAPs. Sedimentation revealed that approximately six proteins, with apparent molecular weights between 60,000 and 300,000, became incorporated into the microtubule polymer. Bovine MAPs promoted microtubule formation by fish tubulin at 2-5 degrees C, and proteins corresponding to MAPs 1 and 2 co-sedimented with the polymer. MAPs from C. aceratus also enhanced the polymerization of bovine tubulin at 33 degrees C, but the microtubules depolymerized at 0 degrees C. We conclude that MAPs are part of the microtubules of Antarctic fishes, that these proteins promote microtubule assembly in much the same way as mammalian MAPs, and that they do not possess special capacities to promote microtubule assembly at low temperatures or to prevent cold-induced microtubule depolymerization.  相似文献   

7.
A number of Antarctic fish species are affected by an unusual gill condition known as X-cell disease, named in reference to morphologically similar lesions of unknown aetiology reported from northern hemisphere fishes. Despite the disease being first recorded in Antarctic fishes over 25 years ago, no progress has been made in identifying its cause or in confirming any possible relationship with northern fishes. Although once thought to be a neoplasm, observations of lesions in non-Antarctic fishes point towards a parasitic origin. The life cycle of the proposed causal organism is unknown, however, and the only stages identified are those of the eponymous cells in the lesions. Here, we show X-cells in diseased gills of the Antarctic nototheniid Trematomus bernacchii represent multinucleate cysts of an unknown parasitic organism. Furthermore, we use molecular genetic methodology to show that the organism responsible is closely related to that identified in X-cell lesions of the common European dab, Limanda limanda and that the disease thus has a global distribution. Phylogenetic tree construction based on 18S rDNA sequences confirms that X-cell organisms form a group of closely related parasites, but robust positioning of the X-cell clade in the tree awaits more extensive genetic sequencing.  相似文献   

8.
Icefish or white- blooded fish are a family of species unique among vertebrates in that they possess no haemoglobin. With the exception of one species which occurs on the southern Patagonian shelf, icefish live only in the cold-stable and oxygen-rich environment of the Southern Ocean. It is still questionable how old icefish are in evolutionary terms: they may not be older than 6 Ma, i.e. they evolved well after the Southern Ocean started to cool down or they are 15–20 Ma old and started to evolve some time after the formation of the Antarctic Circumpolar Current. Individuals of most icefish species with the exception of species of the genus Champsocephalus have been found down to 700–800 m depth, a few even down to more than 1,500 m. Icefish have been shown to present organ-level adaptations on different levels to compensate for the ‘disadvantages’ of lacking respiratory pigments. These include a low metabolic rate, well perfused gills, increased blood volume, increased cardiac output, cutaneous uptake of oxygen, increased blood flow with low viscosity, enlarged capillaries, large heart, and increased skin vascularity. Biological features, such as reproduction and growth, are not unique and are comparable to other notothenioids living in the same environment. Icefish produce large yolky eggs which have a diameter of more than 4 mm in most species. Consequently, the number of eggs produced is comparatively small and exceeds 10,000–20,000 eggs in only a few cases. With the exception of species of the genus Champsocephalus which mature at an age of 3 to 4 years, icefish do not attain maturity before they are 5–8 years old. Spawning period of most icefish species is autumn–winter. The incubation period spans from 2 to 3 months in the north of the Southern Ocean to more than 6 months close to the continent. Growth in icefish to the extent it is known is fairly rapid. They grow 6–10 cm in length per annum before they reach spawning maturity. Icefish feed primarily on krill and fish. Some icefish species were abundant enough to be exploited by commercial fisheries, primarily in the 1970s and 1980s with Champsocephalus gunnari as the main target species. Most stocks of this species had been overexploited by the beginning of the 1990s, some had further declined due to natural causes. Other species taken as by-catch species in fisheries were Chaenocephalus aceratus, Pseudochaenichthys georgianus, and Chionodraco rastrospinosus. Chaenodraco wilsoni was the only species exploited on a commercial scale in the high-Antarctic. Part I was published in the preceding issue of Polar Biology. DOI 10.1007/s00300-005-0019-z.  相似文献   

9.
Icefish or white-blooded fish are a family of species, unique among vertebrates in that they possess no haemoglobin. With the exception of one species which occurs on the southern Patagonian shelf, icefish live only in the cold-stable and oxygen-rich environment of the Southern Ocean. It is still questionable how old icefish are in evolutionary terms: they may not be older than 6 Ma, i.e. they evolved well after the Southern Ocean started to cool down or they are 15–20 Ma old and started to evolve some time after the formation of the Antarctic Circumpolar Current. Individuals of most icefish species with the exception of species of the genus Champsocephalus have been found down to 700–800 m depth, a few even down to more than 1,500 m. Icefish have been shown to present organ-level adaptations on different levels to compensate for the ‘disadvantages’ of lacking respiratory pigments. These include a low metabolic rate, well perfused gills, increased blood volume, increased cardiac output, cutaneous uptake of oxygen, increased blood flow with low viscosity, enlarged capillaries, large heart, and increased skin vascularity. Biological features, such as reproduction and growth, are not unique and are comparable to other notothenioids living in the same environment. Icefish produce large yolky eggs which have a diameter of more than 4 mm in most species. Consequently, the number of eggs produced is comparatively small and exceeds 10,000–20,000 eggs in only a few cases. With the exception of species of the genus Champsocephalus which mature at an age of 3 to 4 years, icefish do not attain maturity before they are 5–8 years old. Spawning period of most icefish species is autumn-winter. The incubation period spans from 2 to 3 months in the north of the Southern Ocean to more than 6 months close to the continent. Growth in icefish to the extent it is known is fairly rapid. They grow 6–10 cm in length per annum before they reach spawning maturity. Icefish feed primarily on krill and fish. Some icefish species were abundant enough to be exploited by commercial fisheries, primarily in the 1970s and 1980s with Champsocephalus gunnari as the main target species. Most stocks of this species had been overexploited by the beginning of the 1990s, some had further declined due to natural causes. Other species taken as by-catch species in fisheries were Chaenocephalus aceratus, Pseudochaenichthys georgianus, and Chionodraco rastrospinosus. Chaenodraco wilsoni was the only species exploited on a commercial scale in the high-Antarctic. Part II will be published in the following issue. DOI 10.1007/s00300-005-0020-6.  相似文献   

10.
Molecular ecophysiology of Antarctic notothenioid fishes   总被引:5,自引:0,他引:5  
The notothenioid fishes of the Southern Ocean surrounding Antarctica are remarkable examples of organismal adaptation to extreme cold. Their evolution since the mid-Miocene in geographical isolation and a chronically cold marine environment has resulted in extreme stenothermality of the extant species. Given the unique thermal history of the notothenioids, one may ask what traits have been gained, and conversely, what characters have been lost through change in the information content of their genomes. Two dramatic changes that epitomize such evolutionary transformations are the gain of novel antifreeze proteins, which are obligatory for survival in icy seawater, by most notothenioids and the paradoxical loss of respiratory haemoproteins and red blood cells, normally deemed indispensable for vertebrate life, by the species of a highly derived notothenioid family, the icefishes. Here, we review recent advances in our understanding of these traits and their evolution and suggest future avenues of investigation.The formerly coherent paradigm of notothenioid freeze avoidance, developed from three decades of study of antifreeze glycoprotein (AFGP) based cold adaptation, now faces challenges stemming from the recent discovery of antifreeze-deficient, yet freeze-resistant, early notothenioid life stages and from definitive evidence that the liver is not the physiological source of AFGPs in notothenioid blood. The resolution of these intriguing observations is likely to reveal new physiological traits that are unique to the notothenioids. Similarly, the model of AFGP gene evolution from a notothenioid pancreatic trypsinogen-like gene precursor is being expanded and refined based on genome-level analyses of the linked AFGP loci and their ancestral precursors. Finally, the application of comparative genomics to study evolutionary change in the AFGP genotypes of cool-temperate notothenioids from sub-Antarctic habitats, where these genes are not necessary, will contribute to the mechanistic understanding of the dynamics of AFGP gene gain and loss.In humans and most vertebrates, mutations in the alpha- or beta-globin genes or defects in globin chain synthesis are causes of severe genetic disease. Thus, the 16 species of haemoglobinless, erythrocyte-null icefishes are surprising anomalies -- in fact, they could only have evolved and thrived due to relaxed selection pressure for oxygen-binding proteins in the cold, oxygen-rich waters of the Southern Ocean. Fifteen of the sixteen icefish species have lost most of the adult alphabeta-globin locus and retain only a small 3' fragment of the alpha-globin gene. The only exception to this pattern occurs in Neopagetopsis ionah, which possesses a disrupted alphabeta-globin gene complex that probably represents a non-functional intermediate on the evolutionary pathway to near total globin gene extinction. By contrast, six of the icefish species fail to express myoglobin. The absence of myoglobin expression has occurred by several independent mutations and distinct mechanisms. Haemoprotein loss is correlated with dramatic increases in cellular mitochondrial density, heart size, blood volume and capillary bed volume. Evolution of these compensatory traits was probably facilitated by the homeostatic activity of nitric oxide, a key modulator of angiogenesis and mitochondrial biogenesis. These natural knockouts of the red blood cell lineage are an excellent genomic resource for erythroid gene discovery by comparative genomics, as illustrated for the newly described gene, bloodthirsty.  相似文献   

11.
The radiation of notothenioid fishes (order Perciformes) in the Southern Ocean provides a model system for investigating evolution and adaptation to a low temperature environment. The Notothenioid fishes comprising eight families, 43 genera and 122 species dominate the fish fauna in Antarctica. The diversification of the clade probably began 15–20 million years ago after the formation of the Antarctic Polar Front. The radiation was, therefore, associated with climatic cooling down to the present day temperature of −1.86 °C. Origins and Evolution of the Antarctic Biota Geological Society Special Publication No. 47, Geological Society of London. pp. 253–268). The success of the group has been closely linked with the evolution of glycopeptide and peptide antifreezes, which are amongst the most abundant proteins in blood and interstitial fluid. The radiation of the clade has been associated with disaptation (evolutionary loss of function) and recovery. For example, it is thought that the icefishes (Channichyidae) lost haemoglobin through a single mutational event leading to the deletion of the entire β-globin gene and the 5′ end of the linked α-globin gene, resulting in compensatory adaptations of the cardiovascular system. Phylogenetically based statistical methods also indicate a progressive and dramatic reduction in the number of skeletal muscle fibres (FNmax) at the end of the recruitment phase of growth in basal compared to derived families. The reduction in FNmax is associated with a compensatory increase in the maximum fibre diameter, which can reach 100 μm in slow and 600 μm in fast muscle fibres. At −1 to 0 °C, the oxygen consumption of isolated mitochondria per mg mitochondrial protein shows no evidence of up-regulation relative to mitochondria from temperate and tropical Perciform fishes. The mitochondria content of slow muscle fibres in Antarctic notothenioids is towards the upper end of the range reported for teleosts with similar lifestyles, reaching 50% in Channichthyids. High mitochondrial densities facilitate ATP production and oxygen diffusion through the membrane lipid compartment of the fibre. Modelling studies suggest that adequate oxygen flux in the large diameter muscle fibres of notothenioids is possible because of the reduced metabolic demand and enhanced solubility of oxygen associated with low temperature. At the whole animal level size-corrected resting metabolic rate fits on the same temperature relationship as for Perciformes from warmer climates. It seems likely that the additional energetic costs associated with antifreeze synthesis and high mitochondrial densities are compensated for by reductions in other energy requiring processes: a hypothesis that could be tested with detailed energy budget studies. One plausible candidate is a reduction in membrane leak pathways linked to the loss of muscle fibres, which would serve to minimise the cost of maintaining ionic gradients.  相似文献   

12.
Species that live in extreme conditions have specially adapted physiology and tissue/organ organisation. The adaptation of lymphoid organs to low temperatures in polar species could be an original field of study, indicating how the immune system works under extreme conditions. In fishes, the head kidney is a key organ for immunity and here the cytology of this organ is studied in two common Antarctic species: Trematomus bernacchii and Chionodraco hamatus. Ultrastructural analysis revealed heterogeneity of epithelial cells, with reticular cells, subcapsular- and perivascular-limiting cells. Differences in the size and morphology of epithelial cells were observed between the polar species and warm water species of fish. Intermingled with epithelial cell leucocytes, such as lymphocytes, thrombocytes and macrophages, had comparable morphology in both species, contrary to sharp differences observed in the morphology of erythrocytes and granulocytes. The functional adaptation of the head kidney to the low temperatures of polar water is discussed.  相似文献   

13.
Summary Compared with those of other vertebrate animals, the livers of Antarctic fishes have a unique type of perisinusoidal (Ito) cell. These cells were studied in 9 species with emphasis on Dissostichus mawsoni. Perisinusoidal cells are found in large numbers throughout the liver, have long cytoplasmic arms and, in Dissostichus, contain numerous lipid droplets. The extensive rough endoplasmic reticulum and prominent nucleolus are ultrastructural characteristics indicating that these cells are engaged in protein synthesis. An evolutionary specialization, perisinusoidal cells may be partially responsible for the elevated levels of protein synthesis characteristic of fishes in the Antarctic marine environment.  相似文献   

14.
15.
16.
17.
There is scant information available on the ecomorphology of Antarctic fishes, and especially on their feeding capabilities. We measured interspecific variation in mechanical advantage (MA), force-producing capability, and suction index for the jaws of the five dominant taxa of high-Antarctic fishes: the nototheniid Trematomus bernacchii; the zoarcids Pachycara brachycephalum, Lycodichthys dearborni, and Ophthalmolycus amberensis; and the liparid Paraliparis devriesi. Analysis of variance indicated significant differences in jaw metrics, and ordinations of morphological traits identified three loosely defined groups reflecting their family-level taxonomy. Principal component analyses showed distinct segregation between the nototheniid and the liparid, indicating that they are at the extremes of the feeding performance continuum. The zoarcids fell in the middle, suggesting that they utilize a combination of feeding modes to capture prey. The liparid had the lowest MA and bite force, but a large epaxialis implied a ram-suction-feeding mode. The large adductor mandibulae in the zoarcids P. brachycephalum and L. dearborni suggest that they are capable of grasping mobile prey and manipulating sedentary, hard-shelled macroinvertebrates. The zoarcids had a smaller epaxialis than the liparid and may not be as efficient as suction-feeders. Values for mechanical advantage ratios and suction indices in Antarctic fishes were within the range known for non-Antarctic fishes. The five Antarctic species do not possess dentition specialized for durophagous feeding; however, the high mechanical advantage ratio in the nototheniid and, to a lesser extent, in the zoarcids, suggests that durophagy may be possible.  相似文献   

18.
粘孢子虫是一类拥有广泛寄主的后生动物寄生虫,主要寄生于鱼类,并可引发病害,从而受到人们广泛的关注。但其基础研究还不够深入,在分类地位和分类系统方面存在着许多争议。而碘泡科是粘孢子虫最大的一科,其在属级和种级阶元的归属问题上也一直备受争议。此类动物结构简单、种类繁多,依据传统的形态特征进行的分类并不十分准确,借助更为先进的显微技术和以及分子生物学、免疫学等方法的应用,其分类学研究取得了巨大进步。本文从碘泡科的种、属级阶元分类和方法学两个方面对国内外碘泡科物种系统分类学研究的现状进行了综述,对碘泡科各属的归类问题进行了梳理,并对一些容易混淆的种类进行了厘清,同时总结了应用于碘泡虫系统分类研究中的几种方法,以期为该科动物的系统分类和鱼类粘孢子虫病的防治提供基础资料。  相似文献   

19.
The Antarctic fish family Nototheniidae (Perciformes) presumably originated from a benthic ancestor, and several lineages have evolved to live or at least feed in the water column, a trend called pelagization. Here, we use information on phylogeny, allometric growth, and diet composition for an integrated analysis of morphological and ecological diversification in this group, mainly focusing on the subfamilies Trematominae and Pleuragramminae. A phylogenetic analysis of data published in earlier systematic studies produced eight equally parsimonious trees, all indicating that several previously recognized taxa are paraphyletic. These phylogenetic trees all suggest multiple origins of pelagic life styles. Multivariate morphometric analyses including nine species showed that juveniles and adults grow according to a common pattern of ontogenetic allometry. The morphometric differences among species are mosdy the result of lateral transpositions of the growth trajectories, indicating that embryonic and larval development is more important as a determinant of morphological variation than allometric growth as juveniles and adults. We studied patterns of interspecific variation with principal components and the covariation between morphometric variables and food composition with a partial least-squares analysis. Both analyses revealed a gradient from benthic to pelagic foragers. Measurements of structures involved in swimming have a prominent role in these analyses, suggesting adaptive evolution of these traits. Tracing morphometric traits on the phylogenetic trees revealed a considerable amount of evolutionary plasticity, showing that species related phylogenetically need not be morphologically similar, but can diverge considerably, perhaps as a response to natural selection and adaptation to different habitats and foraging modes. In accordance, a test of phylogenetically independent contrasts showed that bursts of increased morphological change accompanied habitat shifts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号