首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The upper stem of helix 34, consisting of the base-paired sequences C1063G1064U1065 and A1191C1192G1193, is suggested to be involved in the binding of spectinomycin. In E. coli 16S rRNA, each of the three mutations at position C1192 confers resistance to spectinomycin. In chloroplast ribosomes from tobacco plants and algae, resistance is conferred by single mutations at positions 1064, 1191, and 1193 (E. coli numbering). Since each of these mutations disrupt any of the three basepairs in the upper stem of helix 34, it has been postulated that spectinomycin can bind to this region and inhibit protein synthesis, only if its nucleotides are basepaired. We have tested this hypothesis by introducing disruptive and compensatory mutations that alter the basepair G1064-C1192. Using the specialized ribosome system, the translational activity of such mutants was determined, in the absence and presence of spectinomycin. We show that any of the three disruptive mutations A1064, C1064, and U1064 confer resistance, in accordance with the model for spectinomycin binding. Compensatory mutations A1064U1192, C1064G1192, and U1064A1192, however, maintained the resistance. This indicates that a basepaired conformation as such is not sufficient for spectinomycin binding, but rather that a G-C pair at positions 1064 and 1192 is required. In addition, we find that the translational activity of specialized ribosomes containing the mutations C1064G1192 is 5-fold lower compared to that of ribosomes containing any of the other mutations introduced, regardless whether spectinomycin is present or not. Since the introduction of C1064G1192 is expected to increase the stability of the upper stem of helix 34, we suggest that these mutations impair ribosome function by preventing the (transient) disruption of the upper stem. By analogy, we speculate that spectinomycin blocks protein synthesis by stabilizing the upper stem. In both cases, the 30S subunit would be frozen into an inactive conformation.  相似文献   

2.
Two single-base mutations in 16S rRNA conferring high-level resistance to spectinomycin were isolated on a plasmid-borne copy of the rrnD operon from Salmonella enterica serovar Typhimurium. Neither of the mutations (C1066U and C1192U) had appreciable effects on cell growth, but each had differential effects on resistance to spectinomycin and fusidic acid. Both mutations also conferred resistance to spectinomycin in Escherichia coli strains containing deletions of all seven chromosomal rrn operons and expressing plasmid-encoded Salmonella rRNA exclusively. In contrast, when expressed in E. coli strains containing intact chromosomal rrn operons, the strains were sensitive to spectinomycin. However, chromosomal mutations arose that allowed expression of the rRNA-dependent spectinomycin resistance phenotype. It is proposed that in heterogeneous rRNA populations, the native E. coli rRNA out-competes the heterologous Salmonella rRNA for binding to ribosomal proteins, translation factors, or ribosome assembly, thus limiting entry of the antibiotic-resistant 30S subunits into the functioning ribosome pool.  相似文献   

3.
Two single-base mutations in 16S rRNA conferring high-level resistance to spectinomycin were isolated on a plasmid-borne copy of the rrnD operon from Salmonella enterica serovar Typhimurium. Neither of the mutations (C1066U and C1192U) had appreciable effects on cell growth, but each had differential effects on resistance to spectinomycin and fusidic acid. Both mutations also conferred resistance to spectinomycin in Escherichia coli strains containing deletions of all seven chromosomal rrn operons and expressing plasmid-encoded Salmonella rRNA exclusively. In contrast, when expressed in E. coli strains containing intact chromosomal rrn operons, the strains were sensitive to spectinomycin. However, chromosomal mutations arose that allowed expression of the rRNA-dependent spectinomycin resistance phenotype. It is proposed that in heterogeneous rRNA populations, the native E. coli rRNA out-competes the heterologous Salmonella rRNA for binding to ribosomal proteins, translation factors, or ribosome assembly, thus limiting entry of the antibiotic-resistant 30S subunits into the functioning ribosome pool. Received: 28 September 2001 / Accepted: 26 March 2002  相似文献   

4.
We report a novel mutation, C1066U in 16S rRNA which was selected for resistance to spectinomycin, an antibiotic which inhibits ribosomal translocation. The minimal inhibitory concentration (MIC) of spectinomycin determined for this mutant (15 micrograms/ml) is greater than with the wild-type plasmid (5 micrograms/ml) but lower than with the well known C1192U mutation (> 80 micrograms/ml). The C1066U mutation also increases the cells sensitivity to fusidic acid, another antibiotic which inhibits translation at the translocation stage, whereas C1192U is unchanged relative to the wild type. We discuss why the acquisition of resistance to one of these drugs is often associated with hypersensitivity to the other.  相似文献   

5.
Isolation of temperature-sensitive mutants of 16 S rRNA in Escherichia coli   总被引:15,自引:0,他引:15  
Temperature-sensitive mutants have been isolated following hydroxylamine mutagenesis of a plasmid containing Escherichia coli rRNA genes carrying selectable markers for spectinomycin resistance (U1192 in 16 S rRNA) and erythromycin resistance (G2058 in 23 S rRNA). These antibiotic resistance alleles, originally identified by Morgan and co-workers, enable us to follow expression of cloned rRNA genes in vivo. Recessive mutations causing the loss of expression of the cloned 16 S rRNA gene were identified by the loss of the ability of cells to survive on media containing spectinomycin. The mutations were localized by in vitro restriction fragment replacement followed by in vivo marker rescue and were identified by DNA sequence analysis. We report here seven single-base alterations in 16 S rRNA (A146, U153, A350, A359, A538, A1292 and U1293), five of which produce temperature-sensitive spectinomycin resistance and two that produce unconditional loss of resistance. In each case, loss of ribosomal function can be accounted for by disruption of base-pairing in the secondary structure of 16 S rRNA. For the temperature-sensitive mutants, there is a lag period of about two generations between a shift to the restrictive temperature and cessation of growth, implying that the structural defects cause impairment of ribosome assembly.  相似文献   

6.
Culture-independent sampling in conjunction with a functional cloning approach identified diverse antibiotic resistance genes for different classes of antibiotics in gut microbiomes from both conventionally raised and free-range chickens. Many of the genes are phylogenetically distant from known resistance genes. Two unique genes that conferred ampicillin and spectinomycin resistance were also functional in Campylobacter, a distant relative of the Escherichia coli host used to generate the genomic libraries.  相似文献   

7.
Ribosomal RNA and protein mutants resistant to spectinomycin.   总被引:7,自引:0,他引:7       下载免费PDF全文
We have compared the influence of spectinomycin (Spc) on individual partial reactions during the elongation phase of translation in vitro by wild-type and mutant ribosomes. The data show that the antibiotic specifically inhibits the elongation factor G (EF-G) cycle supported by wild-type ribosomes. In addition, we have reproduced the in vivo Spc resistant phenotype of relevant ribosome mutants in our in vitro translation system. In particular, three mutants with alterations at position 1192 in 16S rRNA as well as an rpsE mutant with an alteration of protein S5 were analysed. All of these ribosomal mutants confer a degree of Spc resistance for the EF-G cycle in vitro that is correlated with the degree of growth rate resistance to the antibiotic in culture.  相似文献   

8.
Characterisation of two new gene cassettes, aadA5 and dfrA17   总被引:8,自引:0,他引:8  
Escherichia coli INS33 was isolated from the urinary tract of an infected patient. It was resistant to ampicillin, chloramphenicol, spectinomycin, streptomycin, sulfafurazole, tetracycline and trimethoprim. PCR screening revealed the presence of a class 1 integron that harboured two new gene cassettes, designated dfrA17 and aadA5. The new dfrA17 cassette was 91% identical to the known dfrA7 cassette. The aadA5 cassette was 95% identical over the first 830 bp to aadA4, but lacked the IS26 element found at the 3' end of this truncated cassette. Cloning and expression of the cassette region demonstrated that dfrA17 conferred high level resistance to trimethoprim but aadA5 conferred resistance to spectinomycin but not to streptomycin.  相似文献   

9.
Aminoglycoside resistance in bacteria can be acquired by several mechanisms, including drug modification, target alteration, reduced uptake and increased efflux. Here we demonstrate that increased resistance to the aminoglycosides streptomycin and spectinomycin in Salmonella enterica can be conferred by increased expression of an aminoglycoside adenyl transferase encoded by the cryptic, chromosomally located aadA gene. During growth in rich medium the wild-type strain was susceptible but mutations that impaired electron transport and conferred a small colony variant (SCV) phenotype or growth in glucose/glycerol minimal media resulted in activation of the aadA gene and aminoglycoside resistance. Expression of the aadA gene was positively regulated by the stringent response regulator guanosine penta/tetraphosphate ((p)ppGpp). SCV mutants carrying stop codon mutations in the hemA and ubiA genes showed a streptomycin pseudo-dependent phenotype, where growth was stimulated by streptomycin. Our data suggest that this phenotype is due to streptomycin-induced readthrough of the stop codons, a resulting increase in HemA/UbiA levels and improved electron transport and growth. Our results demonstrate that environmental and mutational activation of a cryptic resistance gene can confer clinically significant resistance and that a streptomycin-pseudo-dependent phenotype can be generated via a novel mechanism that does not involve the classical rpsL mutations.  相似文献   

10.
Variants of BamHI endonuclease in which the glutamate 113 residue has been changed to lysine or the aspartate 94 to asparagine were shown to behave as repressor molecules in vivo. This was demonstrated by placing a BamHI recognition sequence, GGATCC, positioned as an operator sequence in an antisense promoter for the aadA gene (spectinomycin resistance). Repression of this promoter relieved the inhibition of expression of spectinomycin resistance. This system was then used to select new binding proficient/cleavage deficient BamHI variants. The BamHI endonuclease gene was mutagenized either by exposure to hydroxylamine or by PCR. The mutagenized DNA was reintroduced into E. coli carrying the aadA gene construct, and transformants that conferred spectinomycin resistance were selected. Twenty Spr transformants were sequenced. Thirteen of these were newly isolated variants of the previously identified D94 and E113 residues which are known to be involved in catalysis. The remaining seven variants were all located at residue 111 and the glutamate 111 residue was shown to be involved with catalysis.  相似文献   

11.
A mutation that affects the expression of spectinomycin resistance in a spectinomycin-resistant (spcA), conditionally asporogenic strain of Bacillus subtilis has been designated srm (spectinomycin resistance modifier). This mutation resulted in altered colony morphology and increased growth rate and sporulation efficiency in the presence of spectinomycin.  相似文献   

12.
The bacterial gene aad A encodes the enzyme aminoglycoside-3-adenyltransferase that confers resistance to spectinomycin and streptomycin in Escherichia coli. Chimeric genes have been constructed for expression in plants, and were introduced into Nicotiana tabacum by Agrobacterium binary transformation vectors. Spectinomycin or streptomycin in selective concentrations prevent greening of N. tabacum calli. Transgenic clones, however, formed green calli on selective media containing spectinomycin, streptomycin, or both drugs. Resistance was inherited as a dominant Mendelian trait in the seed progeny. Resistance conferred by the chimeric aad A gene can be used as a color marker similar to the resistance conferred by the streptomycin phosphotransferase gene to streptomycin.  相似文献   

13.
We have isolated three new temperature-sensitive mutants of 16S rRNA, using the U1192 spectinomycin resistance as a selectable marker. These differ from our previously characterized ts mutants in that they map in the upstream leader region of the rRNA precursor (at positions -13, -30 and -59). The relative distribution of plasmid and chromosome-derived 16S rRNA is similar between 30S subunits, 70S ribosomes and polysomes at the permissive and restrictive temperatures. Processing of the 5' end of the RNA does not appear to be affected by the mutations. Second-site suppressors were found, and all of these except one (which is within 16S rRNA) were also due to point mutations in the upstream leader.  相似文献   

14.
Regeneration of transformed flax shoots after inoculation withAgrobacterium tumefaciens carrying a binary vector with either a neomycin phosphotransferase (nptII) gene and a -glucuronidase (GUS) reporter gene or a spectinomycin resistance gene was examined. Hypocotyls from 4-day-old seedlings were inoculated with either of the twoA. tumefaciens strains. Selection and regeneration were achieved on a medium containing 0.1 M thidiazuron, 0.01 M napthalene acetic acid, 100 mgl–1 kanamycin sulphate or spectinomycin sulphate and 300 mgl–1 cefotaxime. Use of different neomycins for the selection of transformed tissues did select transformed calli but not transformed shoots either directly or via a callus phase. Selection based on spectinomycin resistance allowed the growth of transformed shoots. Transgenic shoots were rooted on a medium containing 100 mgl–1 spectinomycin sulphate. Integration of the spectinomycin resistance gene into the flax genome was confirmed by Southern blot hybridizations and spectinomycin resistance was shown to be inherited as a dominant Mendeliant trait. Therefore, spectinomycin resistance is more suitable for genetic engineering of flax than aminoglycoside resistance.  相似文献   

15.
Summary A mutant of Escherichia coli B has been isolated which shows a novel phenotype of spectinomycin dependence. The mutant, termed RD, needs spectinomycin to grow at temperatures of 37° or below; it is unable to grow at 42° in either the presence or absence of spectinomycin. Secondary mutants which grow well in the absence of spectinomycin can be isolated spontaneously at a frequency of about 10-6. Two-dimensional gel electrophoresis of ribosomal proteins from 25 of these revertants showed that two revertants had an alteration in S4; one other showed an alteration in L5, and one showed an apparent absence of L1. Mutant RD itself had an altered less basic S5, which was maintained in all the revertants that were checked.Genetic analysis indicated that RD was a double mutant: one mutation, which alone conferred a spectinomycin resistant phenotype on the strain, was located in the strA region of the E. coli chromosome and was represented by the mutation in S5. The other mutation, which conferred the dependence on spectinomycin, mapped close to the rif locus.  相似文献   

16.
Amikacin resistance mediated by multiresistance transposon Tn2424   总被引:22,自引:5,他引:17       下载免费PDF全文
Tn2424, a multiresistance transposon 25 kilobases long, was isolated from IncFII plasmid NR79. Tn2424 transposed resistance to sulfonamides, streptomycin and spectinomycin, mercuric chloride, chloramphenicol, and amikacin with a frequency of 6 X 10(-5). Resistance to amikacin was mediated by a 6'-N-acetyltransferase, which conferred higher levels of resistance in Pseudomonas aeruginosa than in Escherichia coli. A restriction analysis and cloning experiments resulted in a physical and functional map of Tn2424. Comparison by a heteroduplex technique revealed that Tn2424 includes the total sequence of Tn21 and two additional DNA fragments that are 1.8 and 4 kilobases long.  相似文献   

17.
Spectinomycin dependence in Bacillus subtilis involves two mutations, one conferring drug resistance and the other producing a requirement for spectinomycin for growth.  相似文献   

18.
Streptomyces achromogenes subsp. rubradiris plated at low density on 1,000 micrograms of spectinomycin per ml initially produces slow-growing, bald colonies from which arise, in a spatially and temporally random fashion, foci of rapidly growing aerial mycelium-forming cells whose DNA contains an approximately 200- to 300-fold amplification of an 8-kilobase (kb) sequence. This sequence was cloned in Escherichia coli on pBR322 and physically characterized. It was separately cloned also in Streptomyces lividans as a BglII fragment and shown to impart high-level resistance to spectinomycin in an orientation-independent manner when present in either the high-copy-number vector pIJ702 or the unit-copy-number vector pIJ943. A spectinomycin resistance determinant was shown to reside on a 1.7-kb SphI-BglII subfragment. Analysis of Southern blots of restriction enzyme digests of wild-type S. achromogenes DNA probed with the labeled 8-kb DNA sequence resulted in the identification and subsequent cloning in S. lividans of a 10.4-kb BamHI fragment which probably includes the complete 8.8-kb amplifiable unit of DNA. This unit is present in wild-type S. achromogenes and in the initially slow-growing, bald colonies arising on 1,000 micrograms of spectinomycin per ml as a single copy. It carries two 0.8-kb direct repeats at its termini as well as the spectinomycin resistance determinant close to one of these termini. About 5% of protoplast regenerants from wild-type S. achromogenes and 77% of protoplast regenerants from the rapidly growing strains lost both the ability to grow on spectinomycin at 10 micrograms/ml and the sequences that hybridize with the 8-kb probe DNA. The 1.7-kb Bg/II-SphI resistance fragment, when introduced via the vector pIJ702 into an S. achromogenes strain sensitive to 10 microgram of spectinomycin per ml, permitted its vigorous growth on 1,000 micrograms of the antibiotic per ml.  相似文献   

19.
An integrative plasmid containing a 1.3 kb fragment of chromosomal DNA from Enterobacter amnigenus was constructed. The Omega fragment encoding spectinomycin/streptomycin resistance was cloned into the unique BglII site of the resulting plasmid, and the interrupted fragment was transferred via plasmid pMAK705 by electroporation into E. amnigenus with a selection for spectinomycin resistance. Cointegrants were resolved to generate an E. amnigenus strain that expressed spectinomycin resistance, but grew as rapidly as the parental strain. The cloned fragment encodes a putative homologue of the proW gene of Escherichia coli that is not essential for E. amnigenus growth. The integrative plasmid is now available to introduce any heterologous DNA into the E. amnigenus chromosome, for the construction of promoter-probe vectors for the studies of gene regulation, or to construct plasmids suitable for the isolation of secretion signals. Immediate applications of this system will include the expression and secretion of crystal toxins from bacilli for the biological control of mosquito larvae infected with the bacterial host.  相似文献   

20.
A spectinomycin resistance mutation was isolated in an Escherichia coli rRNA operon (rrnH) located on a multicopy plasmid. Cell-free protein-synthesizing extracts made from cells containing the plasmid were partially resistant to spectinomycin. Although spectinomycin is an aminoglycoside antibiotic, the mutation did not confer resistance to any other aminoglycoside antibiotic tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号