首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The liver X receptors (LXRs) are nuclear receptors that form permissive heterodimers with retinoid X receptor (RXR) and are important regulators of lipid metabolism in the liver. We have recently shown that RXR agonist-induced hypertriglyceridemia and hepatic steatosis in mice are dependent on LXRs and correlate with an LXR-dependent hepatic induction of lipogenic genes. To further investigate the roles of RXR and LXR in the regulation of hepatic gene expression, we have mapped the ligand-regulated genome-wide binding of these factors in mouse liver. We find that the RXR agonist bexarotene primarily increases the genomic binding of RXR, whereas the LXR agonist T0901317 greatly increases both LXR and RXR binding. Functional annotation of putative direct LXR target genes revealed a significant association with classical LXR-regulated pathways as well as peroxisome proliferator-activated receptor (PPAR) signaling pathways, and subsequent chromatin immunoprecipitation-sequencing (ChIP-seq) mapping of PPARα binding demonstrated binding of PPARα to 71 to 88% of the identified LXR-RXR binding sites. The combination of sequence analysis of shared binding regions and sequential ChIP on selected sites indicate that LXR-RXR and PPARα-RXR bind to degenerate response elements in a mutually exclusive manner. Together, our findings suggest extensive and unexpected cross talk between hepatic LXR and PPARα at the level of binding to shared genomic sites.  相似文献   

4.
Liver X receptors (LXRs) are nuclear receptors that are central regulators of cholesterol homeostasis, and synthetic LXR agonists have shown promise as promoters of reverse cholesterol transport and anti-inflammatory agents. Here, we present three X-ray structures of three different agonists bound to the ligand binding domain of LXRα. These compounds are GW3965, F3methylAA, and a benzisoxazole urea, and we show that these diverse chemical scaffolds address common structural themes, leading to high binding affinity for LXR. Our structures show the LXRα ligand binding domain in its homodimeric form, an arrangement previously thought to be stereochemically difficult. A comparison with existing structures of the LXRβ homodimer and LXRα:RXR (retinoid X receptor) heterodimers explains differences in dimer affinity and leads us to propose a model for allosteric activation in nuclear receptor dimers, in which an unactivated RXR partner provides an inhibitory tail wrap to the cofactor binding pocket of LXR.  相似文献   

5.
Dimerization-induced activation of LXR is a unique allosteric mechanism described only for LXR/RXR heterodimers. Previously, we demonstrated that RXR functions as an allosteric activator of LXR binding to ASC-2 coactivator rather than as a direct interaction partner. Here, we investigated the molecular basis of the interaction between LXR/RXR and TRAP220 fragment (TN1/2) harboring two NR boxes. We found that either LXR binding to NR box-2 or RXR binding to NR box-1 was sufficient for optimal LXR/RXR binding to TN1/2, indicating that both receptors contribute equally in this interaction. Notably, the AF2 deletion of either receptor completely abolished LXR/RXR-TN1/2 interaction, suggesting dual roles for both AF2 domains in direct interaction with target NR boxes as well as in allosteric activation of partner receptors. We also found specific residues within NR box-2 required for LXR binding using one- plus two-hybrid system and identified Pro643 residue as a major determinant for NR specificity.  相似文献   

6.
7.
Mitro N  Vargas L  Romeo R  Koder A  Saez E 《FEBS letters》2007,581(9):1721-1726
The liver X receptors (LXRalpha and beta) are nuclear receptors that coordinate carbohydrate and lipid metabolism. Insight into the physiologic roles of the LXRs has been greatly facilitated by the discovery of potent synthetic agonists. Here we show that one of these compounds, T0901317, is also a high-affinity ligand for the xenobiotic receptor pregnane X receptor (PXR). T0901317 binds and activates PXR with the same nanomolar potency with which it stimulates LXR activity. T0901317 induces expression not only of LXR target genes, but also of PXR target genes in cells and animals, including the scavenger receptor CD36, a property not shared by more specific LXR ligands, such as GW3965. Activation of PXR targets may explain why T0901317 induces dramatic liver steatosis, while GW3965 has a milder effect. These results suggest that many of the biological activities heretofore associated with LXR activation may be mediated by PXR, not LXR. Since T0901317 has been widely used in animals to study LXR function, the in vivo effects of this compound ascribed to LXR activation should be re-examined.  相似文献   

8.
9.
10.
11.
12.
Regulation of gene expression of ATP-binding cassette transporter (ABC)A1 and ABCG1 by liver X receptor/retinoid X receptor (LXR/RXR) ligands was investigated in the human intestinal cell line CaCo-2. Neither the RXR ligand, 9-cis retinoic acid, nor the natural LXR ligand 22-hydroxycholesterol alone altered ABCA1 mRNA levels. When added together, ABCA1 and ABCG1 mRNA levels were increased 3- and 7-fold, respectively. T0901317, a synthetic non-sterol LXR agonist, increased ABCA1 and ABCG1 gene expression 11- and 6-fold, respectively. ABCA1 mass was increased by LXR/RXR activation. T0901317 or 9-cis retinoic acid and 22-hydroxycholesterol increased cholesterol efflux from basolateral but not apical membranes. Cholesterol efflux was increased by the LXR/RXR ligands to apolipoprotein (apo)A-I or HDL but not to taurocholate/phosphatidylcholine micelles. Actinomycin D prevented the increase in ABCA1 and ABCG1 mRNA levels and the increase in cholesterol efflux induced by the ligands. Glyburide, an inhibitor of ABCA1 activity, attenuated the increase in basolateral cholesterol efflux induced by T0901317. LXR/RXR activation decreased the esterification and secretion of cholesterol esters derived from plasma membranes. Thus, in CaCo-2 cells, LXR/RXR activation increases gene expression of ABCA1 and ABCG1 and the basolateral efflux of cholesterol, suggesting that ABCA1 plays an important role in intestinal HDL production and cholesterol absorption.  相似文献   

13.
Cholesterol 7α-hydroxylase (cyp7a) mediates cholesterol elimination in the liver by catalyzing the first and rate-limiting step in the conversion of cholesterol into bile acids. Peroxisome proliferator-activated receptor α (PPARα; NR1C1) and liver X receptor α (LXRα; NR1H3) are two nuclear receptors that stimulate the murine Cyp7a1 gene. Here we report that co-expression of PPARα and LXRα in hepatoma cells abolishes the stimulation of Cyp7a1 gene promoter in response to their respective agonists. PPARα and LXRα form an atypical heterodimer that binds to two directly adjacent hexameric sequences localized within overlapping PPARα and LXRα response elements (termed Site I), antagonizing the interaction of PPARα:retinoid X receptor α (RXRα) or RXRα:LXRα with the Cyp7a1 gene promoter. Mutations within either hexameric sequences that specifically abolished LXRα:PPARα heterodimer binding to the murine Cyp7a1 Site I also relieved promoter inhibition. The LXRα:PPARα heterodimer may be important in coordinating the expression of genes that encode proteins involved in metabolism of fats and cholesterol.  相似文献   

14.
Ligand activation of liver X receptors (LXRs) has been shown to impact both lipid metabolism and inflammation. One complicating factor in studies utilizing synthetic LXR agonists is the potential for pharmacologic and receptor-independent effects. Here, we describe an LXR gain-of-function system that does not depend on the addition of exogenous ligand. We generated transgenic mice expressing a constitutively active VP16-LXRα protein from the aP2 promoter. These mice exhibit increased LXR signaling selectively in adipose and macrophages. Analysis of gene expression in primary macrophages derived from two independent VP16-LXRα transgenic lines confirmed the ability of LXR to drive expression of genes involved in cholesterol efflux and fatty acid synthesis. Moreover, VP16-LXRα expression also suppressed the induction of inflammatory genes by lipopolysaccharide to a comparable degree as synthetic agonist. We further utilized VP16-LXRα-expressing macrophages to identify and validate new targets for LXRs, including the gene encoding ADP-ribosylation factor-like 7 (ARL7). ARL7 has previously been shown to transport cholesterol to the membrane for ABCA1-associated removal and thus may be integral to the LXR-dependent efflux pathway. We show that the ARL7 promoter contains a functional LXRE and can be transactivated by LXRs in a sequence-specific manner, indicating that ARL7 is a direct target of LXR. These findings provide further support for an important role of LXRs in the coordinated regulation of lipid metabolic and inflammatory gene programs in macrophages.  相似文献   

15.
16.
Liver X receptor (LXR), a sterol-activated nuclear hormone receptor, has been implicated in cholesterol and fatty acid homeostasis via regulation of reverse cholesterol transport and de novo fatty acid synthesis. LXR is also involved in immune responses, including anti-inflammatory action and T cell proliferation. In this study, we demonstrated that activated LXR suppresses cell cycle progression and proliferation in certain cell types. Stimulation of LXR with synthetic ligand T0901317 or GW3965 inhibited cell growth rate and arrested the cell cycle at the G1/S boundary in several cells, such as RWPE1, THP1, SNU16, LNCaP, and HepG2. However, LXR ligands did not exhibit antiproliferative activity in PC3, HEK293, or HeLa cells. Interestingly, activated LXR-mediated cell cycle arrest is closely correlated with the lipogenic gene expression and triacylglyceride accumulation. In accordance with these findings, suppression of FAS via small-interference RNA (siRNA) partially alleviated the antiproliferative effect of LXR activation in RWPE1 cells. Together, these data suggest that LXR activation with its ligands inhibits cell proliferation and induces G1/S arrest through elevated lipogenic activity, thus proposing a novel effect of activated LXR on cell cycle regulation.  相似文献   

17.
18.
19.
采用细胞转染、油红O染色、油红O染色提取法、GPDH活性测定、semi-qRT-PCR等方法研究了视黄酸X受体α (retinoic acid X receptor α, RXRα)在猪原代前体脂肪细胞分化中的作用及其机理.结果表明,转染pRXRα-EGFP促进了猪前体脂肪细胞RXRα 的表达,脂肪细胞分化能力随之增强, 脂肪细胞GPDH活性、分化转录因子PPARγ和C/EBPαmRNA表达水平均显著升高(P<0.05). 结果提示,RXRα可能通过调控过氧化物酶体增殖物激活受体γ(peroxisome proliferators-activated receptor-γ, PPARγ)和CAAT/增强子结合蛋白家族(CCAAT/enhancer binding proteins, C/EBP)C/EBPα 基因表达变化促进猪前体脂肪细胞分化.  相似文献   

20.
The nuclear receptor retinoid X receptor‐α (RXR‐α)–peroxisome proliferator‐activated receptor‐γ (PPAR‐γ) heterodimer was recently reported to have a crucial function in mediating the deleterious effects of organotin compounds, which are ubiquitous environmental contaminants. However, because organotins are unrelated to known RXR‐α and PPAR‐γ ligands, the mechanism by which these compounds bind to and activate the RXR‐α–PPAR‐γ heterodimer at nanomolar concentrations has remained elusive. Here, we show that tributyltin (TBT) activates all three RXR–PPAR‐α, ‐γ, ‐δ heterodimers, primarily through its interaction with RXR. In addition, the 1.9 Å resolution structure of the RXR‐α ligand‐binding domain in complex with TBT shows a covalent bond between the tin atom and residue Cys 432 of helix H11. This interaction largely accounts for the high binding affinity of TBT, which only partly occupies the RXR‐α ligand‐binding pocket. Our data allow an understanding of the binding and activation properties of the various organotins and suggest a mechanism by which these tin compounds could affect other nuclear receptor signalling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号