共查询到20条相似文献,搜索用时 0 毫秒
1.
Barlow GM Lyons GE Richardson JA Sarnat HB Korenberg JR 《Biochemical and biophysical research communications》2002,293(1):1-6
Farnesol and the related isoprenoids, geranylgeraniol, geranylgeranyl pyrophosphate, and farnesyl pyrophosphate, are produced in the endoplasmic reticulum of hepatocytes in mammals, and each serve important biological functions. Of these compounds, only farnesol was shown to significantly inhibit rabbit liver microsomal cytochrome P450 enzymes. The observed inhibition appeared to be reversible, and was not strictly competitive, but rather mixed in nature. Of the activities examined, ethoxycoumarin de-ethylase and diclofenac-4-hydroxylase activities were most sensitive to farnesol, with K(I) and K(I)' values between 11 and 40 microM. Caffeine-8-hydroxylation and taxol-6-hydroxylation were not inhibited at all by farnesol. Farnesol appeared to be a P450 substrate, as well as an inhibitor, as indicated by the NADPH-dependent decrease in farnesol concentration in microsomal incubations, and the metabolism was inhibited by CO, which pointed to the involvement of P450 isozymes. 相似文献
2.
Heterotrimeric G-proteins control diverse biological processes by conveying signals from seven-transmembrane receptors to intracellular effectors. Although their signaling roles were originally ascribed to their GTP-bound alpha-subunits, more recent evidence points to the equally active roles played by their betagamma-dimers. To elucidate the individual contributions of their gamma-subtypes, we used a gene targeting approach to show that mice lacking the gamma3-subtype display a defective T-cell dependent immune response. To identify the cellular basis for this defect, we demonstrated that gamma3-mRNA is strongly induced in activated CD4+ T-cells. To determine the mechanism for this regulated expression, we used several strategies to identify the importance of a Runx consensus sequence element in the first intron of the gamma3 gene and the Runx1 protein. Overall, these data provide the first genetic evidence for the tight regulation and involvement of the G protein gamma3-subtype in mounting an effective immune response in mice. 相似文献
3.
Mouse Zic5 deficiency results in neural tube defects and hypoplasia of cephalic neural crest derivatives 总被引:1,自引:0,他引:1
Inoue T Hatayama M Tohmonda T Itohara S Aruga J Mikoshiba K 《Developmental biology》2004,270(1):146-162
Zic family genes encode zinc finger proteins, which are homologues of the Drosophila pair-rule gene odd-paired. In the present study, we characterized the fifth member of the mouse Zic family gene, mouse Zic5. Zic5 is located near Zic2, which is responsible for human brain malformation syndrome (holoprosencephaly, or HPE). In embryonic stages, Zic5 was expressed in dorsal part of neural tissues and limbs. Expression of Zic5 overlapped with those of other Zic genes, most closely with Zic2, but was not identical. Targeted disruption of Zic5 resulted in insufficient neural tube closure at the rostral end, similar to that seen in Zic2 mutant mice. In addition, the Zic5-deficient mice exhibited malformation of neural-crest-derived facial bones, especially the mandible, which had not been observed in other Zic family mutants. During the embryonic stages, there were delays in the development of the first branchial arch and extension of the trigeminal and facial nerves. Neural crest marker staining revealed fewer neural crest cells in the dorsal cephalic region of the mutant embryos without significant changes in their migration. When mouse Zic5 was overexpressed in Xenopus embryos, expression of a neural crest marker was enhanced. These findings suggested that Zic5 is involved in the generation of neural crest tissue in mouse development. ZIC5 is also located close to ZIC2 in humans, and deletions of 13q32, where ZIC2 is located, lead to congenital brain and digit malformations known as the "13q32 deletion syndrome". Based on both their similar expression pattern in mouse embryos and the malformations observed in Zic5-deficient mutant mice, human ZIC5 might be involved in the deletion syndrome. 相似文献
4.
The NC-1 and E/C8 monoclonal antibodies recognize a similar population of neural crest cells as they migrate from vagal levels of the neural tube and colonize the branchial arch region of 2- to 3-day-old chicken embryos. Some of these immunoreactive cells then appear to enter the gut mesenchyme on the third day of incubation just caudal to the third branchial cleft. After entering the gut, these cells migrate in a rostral-caudal direction, using primarily the superficial splanchnic mesodermal epithelium of the gut as a substratum. The antigen-positive cells remain preferentially associated with the splanchnopleure. Few antigenic cells enter the mesenchyme surrounding the endoderm at anterior levels whereas they are found throughout the mesenchyme when nearing the umbilicus. At postumbilical levels, immunoreactive cells are distributed on both sides of the differentiating muscle layer but not within it. Although fibronectin immunoreactivity can be found throughout the wall of the gut, there is no apparent relationship between the distribution of fibronectin and the location of the immunoreactive cells. These results suggest that a mechanism more complex than a mere interaction with fibronectin may account for migration of crest-derived cells in the gut. 相似文献
5.
6.
Id proteins are negative regulators of basic helix-loop-helix gene products and participate in many developmental processes. We have evaluated the expression of Id2 in the developing chick heart and found expression in the cardiac neural crest, secondary heart field, outflow tract, inflow tract, and anterior parasympathetic plexus. Cardiac neural crest ablation in the chick embryo, which causes structural defects of the cardiac outflow tract, results in a significant loss of Id2 expression in the outflow tract. Id2 is also expressed in Xenopus neural folds, branchial arches, cardiac outflow tract, inflow tract, and splanchnic mesoderm. Ablation of the premigratory neural crest in Xenopus embryos results in abnormal formation of the heart and a loss of Id2 expression in the heart and splanchnic mesoderm. This data suggests that the presence of neural crest is required for normal Id2 expression in both chick and Xenopus heart development and provides evidence that neural crest is involved in heart development in Xenopus embryos. 相似文献
7.
Common precursors for neural and mesectodermal derivatives in the cephalic neural crest. 总被引:8,自引:0,他引:8
The cephalic neural crest (NC) of vertebrate embryos yields a variety of cell types belonging to the neuronal, glial, melanocytic and mesectodermal lineages. Using clonal cultures of quail migrating cephalic NC cells, we demonstrated that neurons and glial cells of the peripheral nervous system can originate from the same progenitors as cartilage, one of the mesectodermal derivatives of the NC. Moreover, we obtained evidence that the migrating cephalic NC contains a few highly multipotent precursors that are common to neurons, glia, cartilage and pigment cells and which we interprete as representative of a stem cell population. In contrast, other NC cells, although provided with identical culture conditions, give rise to clones composed of only one or some of these cell types. These cells thus appear restricted in their developmental potentialities compared to multipotent cells. It is therefore proposed that, in vivo, the active proliferation of pluripotent NC cells during the migration process generates distinct subpopulations of cells that become progressively committed to different developmental fates. 相似文献
8.
9.
10.
11.
12.
Bronner-Fraser M 《Trends in cell biology》1993,3(11):392-397
In vertebrate embryos, neural crest cells migrate extensively to defined sites where they differentiate into a complex array of derivatives, ranging from neurons to pigment cells. Neural crest cells emerge uniformly from the neural tube but their subsequent migratory pattern is segmented along much of the body axis. What factors control this segmental migration? At trunk levels, it is imposed by the intrinsic segmentation of the neighbouring somitic mesoderm, while in the head, intrinsic information within the neural tube as well as extrinsic influences from the ectoderm are involved. A variety of cell-cell and cell-extracellular matrix interactions are thought to influence initiation and movement of neural crest cells. This review summarizes recent progress from both experimental embryology and cell biology approaches in uncovering the mechanisms underlying neural crest cell migration. 相似文献
13.
14.
目的 探讨Smad2/3a对脊椎动物神经嵴细胞发育的影响。方法 通过在斑马鱼胚胎单细胞时期显微注射smad2/3吗啉环修饰的反义寡核苷酸的方法,特异性敲降smad2/3基因的表达,至胚胎发育至6体节,利用整胚原位杂交检测神经嵴细胞特异性标记基因snail1b,sox10,foxd3和crestin的表达情况;通过casmad2 mRNA和smad3a mRNA显微注射的方法过表达smad2和smad3a,同样利用整胚原位杂交检测神经嵴细胞特异性标记基因crestin的表达情况;通过过表达casmad2及smad3a对下调smad2和smad3a的胚胎进行挽救。结果 smad2/3a被敲低后,crestin的表达量显著降低,而snail1b,sox10和foxd3的表达量无明显变化。smad3b被敲低后,crestin,snail1b,sox10和foxd3的表达量均无明显变化;过表达casmad2和smad3a均可导致crestin的表达量增高;过表达casmad2和smad3a可挽救由于smad2/3a敲降所造成crestin的低表达量。结论 Smad2和Smad3a对神经嵴细胞标记基因crestin的表达具有重要作用。 相似文献
15.
16.
Cadherins in neural crest cell development and transformation 总被引:6,自引:0,他引:6
Pla P Moore R Morali OG Grille S Martinozzi S Delmas V Larue L 《Journal of cellular physiology》2001,189(2):121-132
Cadherins constitute a superfamily of cell adhesion molecules involved in cell-cell interaction, histogenesis and cellular transformation. They have been implicated in the development of various lineages, including derivatives of the neural crest. Neural crest cells (NCC) emerge from the dorsal part of the neural tube after an epithelio-mesenchymal transition (EMT) and migrate through the embryo. After homing and differentiation, NCC give rise to many cell types, such as neurons, Schwann cells and melanocytes. During these steps, the pattern of expression of the various cadherins studied is very dynamic. Cadherins also display plasticity of expression during the transformation of neural crest cell derivatives. Here, we review the pattern of expression and the role of the main cadherins involved in the development and transformation of neural crest cell derivatives. 相似文献
17.
Spinal motor neurons must extend their axons into the periphery through motor exit points (MEPs), but their cell bodies remain within spinal motor columns. It is not known how this partitioning is established in development. We show here that motor neuron somata are confined to the CNS by interactions with a neural crest subpopulation, boundary cap (BC) cells that prefigure the sites of spinal MEPs. Elimination of BC cells by surgical or targeted genetic ablation does not perturb motor axon outgrowth but results in motor neuron somata migrating out of the spinal cord by translocating along their axons. Heterologous neural crest grafts in crest-ablated embryos stop motor neuron emigration. Thus, before the formation of a mature transitional zone at the MEP, BC cells maintain a cell-tight boundary that allows motor axons to cross but blocks neuron migration. 相似文献
18.
We have isolated cDNA clones for several mRNAs expressed in sympathetic neurons but not in adrenal chromaffin cells, two neural crest derivatives thought to share a common precursor. The tissue specificity, developmental expression, and hormonal regulation of these genes have been characterized using Northern blot and in situ hybridization analysis. We find that these mRNAs are independently regulated in development rather than synchronously induced. Our evidence also implicates Nerve Growth Factor (NGF) in the induction of one of these genes in postmigratory crest cells. Two of these genes become induced in mature chromaffin cells, which express a neuronal morphology in response to NGF. These results support the idea that the phenotypic plasticity of neural crest derivatives reflects a common precursor, the multipotentiality of which is sustained through terminal differentiation. 相似文献
19.
20.
Endothelin-3 regulates neural crest cell proliferation and differentiation in the hindgut enteric nervous system 总被引:6,自引:0,他引:6
Neural crest cells (NCC) migrate, proliferate, and differentiate within the wall of the gastrointestinal tract to give rise to the neurons and glial cells of the enteric nervous system (ENS). The intestinal microenvironment is critical in this process and endothelin-3 (ET3) is known to have an essential role. Mutations of this gene cause distal intestinal aganglionosis in rodents, but its mechanism of action is poorly understood. We find that inhibition of ET3 signaling in cultured avian intestine also leads to hindgut aganglionosis. The aim of this study was to determine the role of ET3 during formation of the avian hindgut ENS. To answer this question, we created chick-quail intestinal chimeras by transplanting preganglionic quail hindguts into the coelomic cavity of chick embryos. The quail grafts develop two ganglionated plexuses of differentiated neurons and glial cells originating entirely from the host neural crest. The presence of excess ET3 in the grafts results in a significant increase in ganglion cell number, while inhibition of endothelin receptor-B (EDNRB) leads to severe hypoganglionosis. The ET3-induced hyperganglionosis is associated with an increase in enteric crest cell proliferation. Using hindgut explants cultured in collagen gel, we find that ET3 also inhibits neuronal differentiation in the ENS. Finally, ET3, which is strongly expressed in the ceca, inhibits the chemoattraction of NCC to glial-derived neurotrophic factor (GDNF). Our results demonstrate multiple roles for ET3 signaling during ENS development in the avian hindgut, where it influences NCC proliferation, differentiation, and migration. 相似文献