首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Zebrafish sox9b is an early neural crest marker   总被引:4,自引:0,他引:4  
  相似文献   

3.
 The Sox family of proteins is thought to act to regulate gene expression in a wide variety of developmental processes. Here we describe the cloning of sox30, a novel sox gene from the zebrafish (Danio rerio). In situ hybridization shows that sox30 is expressed in a restricted manner at the boundary between the midbrain and hindbrain during nervous system development. This expression pattern is in direct contrast to that of most other neuronally expressed Sox genes which are expressed throughout the nervous system. Received: 30 October 1998 / Accepted: 1 February 1999  相似文献   

4.
Sox21 is thought to function as a counteracting partner of SoxB1 (Sox1, 2, 3) genes and is involved in cell fate determination. In this study, we comparatively analyzed the expression patterns and conserved cis-regulatory elements of the duplicated sox21 genes in zebrafish. In embryogenesis, sox21b is predominantly expressed in the telencephalon, hypothalamus, mesencephalon and lens, and sox21a is solely expressed in the midbrain-hindbrain boundary, olfactory placode and lateral line, while both genes are expressed in the hindbrain, spinal cord and ear. In adult, sox21a is expressed in the brain, skin, ovary and intestine, while sox21b is expressed in the brain and testis. Interestingly, all 16 pan-vertebrate conserved non-coding elements (CNEs) are asymmetrically preserved in the sox21b locus, whereas two fish-specific elements are kept in the sox21a locus, and this is correlated with increased evolutionary rate of the sox21a protein sequence. Transient transgenic reporter analysis revealed that six sox21b CNEs and two sox21a CNEs drove green fluorescent protein (GFP) expression in tissues correlated with the partitioning of expression in two orthologues. These results indicate that sox21a and sox21b have reciprocally lost expression domains of the ancestral gene reflected by degeneration of certain CNEs in their genomic loci and provide clear evidence for evolution of the duplicated sox21 genes by subfunctionalization. In addition, our data suggest that some CNEs-based regulatory pathways have been predominantly preserved in the sox21b locus.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Desai K  Spikings E  Zhang T 《Cryobiology》2011,63(2):96-103
Zebrafish embryos have not been cryopreserved due to their structural limitations. Although embryo survival rates have been used as the measured outcome for most of the cryopreservation protocols studied, there are very limited data available at the molecular level. This study focused on the effect of chilling and subsequent warming on gene expression of sox2, sox3 and sox19a which play vital roles in the development of zebrafish embryos. A quantitative RT-PCR approach was used to investigate gene expression following chilling at 0 °C for up to 180 min. The effect on gene expression was also studied during a 180 min warming period after chilling for 30 or 60 min. There were significant decreases in sox2 (up to 4-fold) and sox3 (up to 3-fold) expressions following chilling. Significant increases in gene expressions of sox2 (up to 2-fold), sox3 (up to 33-fold) and sox19a (up to 25-fold) were observed during warming in the embryos that had been chilled for 30 min. Similarly, significant increases were observed in sox2 (up to 3-fold) and sox3 (up to 2-fold) during warming in embryos that had been chilled for 60 min. These increases may be explained by compensation for the suppression observed during chilling and/or to activate repair mechanisms or maintain homeostasis.  相似文献   

15.
16.
17.
18.
Recent zebrafish studies have shown that the late appearing pancreatic endocrine cells are derived from pancreatic ducts but the regulatory factors involved are still largely unknown. Here, we show that the zebrafish sox9b gene is expressed in pancreatic ducts where it labels the pancreatic Notch-responsive cells previously shown to be progenitors. Inactivation of sox9b disturbs duct formation and impairs regeneration of beta cells from these ducts in larvae. sox9b expression in the midtrunk endoderm appears at the junction of the hepatic and ventral pancreatic buds and, by the end of embryogenesis, labels the hepatopancreatic ductal system as well as the intrapancreatic and intrahepatic ducts. Ductal morphogenesis and differentiation are specifically disrupted in sox9b mutants, with the dysmorphic hepatopancreatic ducts containing misdifferentiated hepatocyte-like and pancreatic-like cells. We also show that maintenance of sox9b expression in the extrapancreatic and intrapancreatic ducts requires FGF and Notch activity, respectively, both pathways known to prevent excessive endocrine differentiation in these ducts. Furthermore, beta cell recovery after specific ablation is severely compromised in sox9b mutant larvae. Our data position sox9b as a key player in the generation of secondary endocrine cells deriving from pancreatic ducts in zebrafish.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号