首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subisolates segregated from an M-type Plum pox virus (PPV) isolate, PPV-PS, differ widely in pathogenicity despite their high degree of sequence similarity. A single amino acid substitution, K109E, in the helper component proteinase (HCPro) protein of PPV caused a significant enhancement of symptom severity in herbaceous hosts, and notably modified virus infectivity in peach seedlings. The presence of this substitution in certain subisolates that induced mild symptoms in herbaceous hosts and did not infect peach seedlings suggested the existence of uncharacterized attenuating factors in these subisolates. In this study, we show that two amino acid changes in the P1 protein are specifically associated with the mild pathogenicity exhibited by some PS subisolates. Site-directed mutagenesis studies demonstrated that both substitutions, W29R and V139E, but especially W29R, resulted in lower levels of virus accumulation and symptom severity in a woody host, Prunus persica. Furthermore, when W29R and V139E mutations were expressed concomitantly, PPV infectivity was completely abolished in this host. In contrast, the V139E substitution, but not W29R, was found to be responsible for symptom attenuation in herbaceous hosts. Deep sequencing analysis demonstrated that the W29R and V139E heterogeneities already existed in the original PPV-PS isolate before its segregation in different subisolates by local lesion cloning. These results highlight the potential complexity of potyviral populations and the relevance of the P1 protein of potyviruses in pathogenesis and viral adaptation to the host.  相似文献   

2.
Plum pox virus (PPV) is a member of the genus Potyvirus that is able to infect a large variety of plant species, including trees of the genus Prunus, its natural host. When some PPV isolates are propagated for an extended time in herbaceous plants, their ability to infect trees is reduced. The molecular basis of this change in host infectivity is poorly understood. We report the construction of hybrid viruses from cDNA clones of two D-strain isolates of PPV, PPV-D and PPV-R, which differ in their host range. PPV-D can infect GF305 peach seedlings efficiently, however, it is unable to infect Nicotiana clevelandii plants. Conversely, PPV-R infects N. clevelandii, but not GF305 peach seedlings. The analyses of the hybrid viruses showed that, although determinants of PPV pathogenicity are extensively spread throughout the PPV genome, the 3' terminal region of the PPV-R genome, including the 3' noncoding region and the coding regions for the coat protein (CP), NIb, and part of NIa protein, is sufficient to confer infectivity of N. clevelandii in a PPV-D background. Our data demonstrate a high concentration of amino acid substitutions in the CP and a host-specific effect of a deletion at the N terminus of this protein in PPV pathogenicity in peach and N. clevelandii infectivity experiments. These results suggest that relevant host specificity determinants are located in the N-terminal region of the CP. The analyses of the PPV-R and PPV-D chimeras also showed that key host-specific pathogenicity determinants lie in the 5' terminal third of the PPV genome, a region that spans proteins P1, HCPro, and P3. The selection of mutations in only a few specific residues in proteins P1, P3, and 6K1 after partial adaptation of a chimeric virus (BD-GFP) to N. clevelandii further suggests a relevant role for these proteins in host adaptation.  相似文献   

3.
Several subisolates were separated from a single Plum pox virus (PPV) isolate, PPV-PS. In spite of an extremely high sequence conservation (more than 99.9% similarity), different subisolates differed largely in pathogenicity in herbaceous hosts and infectivity in woody plants. The severity of symptomatology did not seem to correlate with virus accumulation. Sequence analysis and site-directed mutagenesis demonstrated that single amino acid changes in the helper component (HC) protein caused a drastic effect on virus symptoms in herbaceous hosts and notably modified virus infectivity in peach seedlings. These results indicate that HC variation might play an important role in virulence evolution of natural plant virus infections. Moreover, the analysis of Potato virus X (PVX)-HC chimeras showed that the identified HC amino acid changes had parallel effects on the severity of symptoms caused by PPV and on HC-induced enhancement of PVX pathogenicity, indicating that HC functions in potyvirus symptomatology and in synergism with other viruses have overlapping determinants.  相似文献   

4.
Site-specific proteases are the most popular kind of enzymes for removing the fusion tags from fused target proteins. Nuclear inclusion protein a (NIa) proteases obtained from the family Potyviridae have become promising due to their high activities and stringencies of sequences recognition. NIa proteases from tobacco etch virus (TEV) and tomato vein mottling virus (TVMV) have been shown to process recombinant proteins successfully in vitro. In this report, recombinant PPV (plum pox virus) NIa protease was employed to process fusion proteins with artificial cleavage site in vitro. Characteristics such as catalytic ability and affecting factors (salt, temperature, protease inhibitors, detergents, and denaturing reagents) were investigated. Recombinant PPV NIa protease expressed and purified from Escherichia coli demonstrated efficient and specific processing of recombinant GFP and SARS-CoV nucleocapsid protein, with site F (N V V V H Q black triangle down A) for PPV NIa protease artificially inserted between the fusion tags and the target proteins. Its catalytic capability is similar to those of TVMV and TEV NIa protease. Recombinant PPV NIa protease reached its maximal proteolytic activity at approximately 30 degrees C. Salt concentration and only one of the tested protease inhibitors had minor influences on the proteolytic activity of PPV NIa protease. Recombinant PPV NIa protease was resistant to self-lysis for at least five days.  相似文献   

5.
Plant viruses of the genera Potyvirus and Ipomovirus (Potyviridae family) use unrelated RNA silencing suppressors (RSS) to counteract antiviral RNA silencing responses. HCPro is the RSS of Potyvirus spp., and its activity is enhanced by the upstream P1 protein. Distinctively, the ipomovirus Cucumber vein yellowing virus (CVYV) lacks HCPro but contains two P1 copies in tandem (P1aP1b), the second of which functions as RSS. Using chimeras based on the potyvirus Plum pox virus (PPV), we found that P1b can functionally replace HCPro in potyviral infections of Nicotiana plants. Interestingly, P1a, the CVYV protein homologous to potyviral P1, disrupted the silencing suppression activity of P1b and reduced the infection efficiency of PPV in Nicotiana benthamiana. Testing the influence of RSS in host specificity, we found that a P1b-expressing chimera poorly infected PPV's natural host, Prunus persica. Conversely, P1b conferred on PPV chimeras the ability to replicate locally in cucumber, CVYV's natural host. The deleterious effect of P1a on PPV infection is host dependent, because the P1aP1b-expressing PPV chimera accumulated in cucumber to higher levels than PPV expressing P1b alone. These results demonstrate that a potyvirus can use different RSS, and that particular RSS and upstream P1-like proteins contribute to defining the virus host range.  相似文献   

6.
Since the discovery of microRNA (miRNA)-guided processing, a new type of RNA silencing, the possibility that such a mechanism could play a role in virus defense has been proposed. In this work, we have analyzed whether Plum pox virus (PPV) chimeras bearing miRNA target sequences (miR171, miR167, and miR159), which have been reported to be functional in Arabidopsis, were affected by miRNA function in three different host plants. Some of these PPV chimeras had clearly impaired infectivity compared with those carrying nonfunctional miRNA target sequences. The behaviors of PPV chimeras were similar but not identical in all the plants tested, and the deleterious effect on virus infectivity depended on the miRNA sequence cloned and on the site of insertion in the viral genome. The effect of the miRNA target sequence was drastically alleviated in transgenic plants expressing the silencing suppressor P1/HCPro. Furthermore, we show that virus chimeras readily escape RNA silencing interference through mutations within the miRNA target sequence, which mainly affected nucleotides matching the 5'-terminal region of the miRNA.  相似文献   

7.
Jiao P  Tian G  Li Y  Deng G  Jiang Y  Liu C  Liu W  Bu Z  Kawaoka Y  Chen H 《Journal of virology》2008,82(3):1146-1154
In this study, we explored the molecular basis determining the virulence of H5N1 avian influenza viruses in mammalian hosts by comparing two viruses, A/Duck/Guangxi/12/03 (DK/12) and A/Duck/Guangxi/27/03 (DK/27), which are genetically similar but differ in their pathogenicities in mice. To assess the genetic basis for this difference in virulence, we used reverse genetics to generate a series of reassortants and mutants of these two viruses. We found that a single-amino-acid substitution of serine for proline at position 42 (P42S) in the NS1 protein dramatically increased the virulence of the DK/12 virus in mice, whereas the substitution of proline for serine at the same position (S42P) completely attenuated the DK/27 virus. We further demonstrated that the amino acid S42 of NS1 is critical for the H5N1 influenza virus to antagonize host cell interferon induction and for the NS1 protein to prevent the double-stranded RNA-mediated activation of the NF-κB pathway and the IRF-3 pathway. Our results indicate that the NS1 protein is critical for the pathogenicity of H5N1 influenza viruses in mammalian hosts and that the amino acid S42 of NS1 plays a key role in undermining the antiviral immune response of the host cell.  相似文献   

8.
Monocot-adapted brome mosaic virus (BMV) and dicot-adapted cowpea chlorotic mottle virus (CCMV) are closely related bromoviruses with tripartite RNA genomes. Although RNAs 1 and 2 together are sufficient for RNA replication in protoplasts, systemic infection also requires RNA3, which encodes the coat protein and the nonstructural 3a movement protein. We have previously shown with bromoviral reassortants that host specificity determinants in both viruses are encoded by RNA3 as well as by RNA1 and/or RNA2. Here, to test their possible role in host specificity, the 3a movement protein genes were precisely exchanged between BMV and CCMV. The hybrid viruses, but not 3a deletion mutants, systemically infected Nicotiana benthamiana, a permissive host for both parental viruses. The hybrids thus retain basic competence for replication, packaging, cell-to-cell spread, and long-distance (vascular) spread. However, the hybrids failed to systemically infect either barley or cowpea, selective hosts for parental viruses. Thus, the 3a gene and/or its encoded 3a protein contributes to host specificity of both monocot- and dicot-adapted bromoviruses. Tests of inoculated cowpea leaves showed that the spread of the CCMV hybrid containing the BMV 3a gene was blocked at a very early stage of infection. Moreover, the BMV hybrid containing the CCMV 3a gene appeared to spread farther than wt BMV in inoculated cowpea leaves. Several pseudorevertants directing systemic infection in cowpea leaves were obtained from plants inoculated with the CCMV(BMV 3a) hybrid, suggesting that the number of mutations required to adapt the hybrid to dicots is small.  相似文献   

9.
Most positive strand RNA viruses infecting plants and animals encode proteins containing the so-called nucleotide binding motif (NTBM) (1) in their amino acid sequences (2). As suggested from the high level of sequence similarity of these viral proteins with the recently described superfamilies of helicase-like proteins (3-5), the NTBM-containing cylindrical inclusion (CI) protein from plum pox virus (PPV), which belongs to the potyvirus group of positive strand RNA viruses, is shown to be able to unwind RNA duplexes. This activity was found to be dependent on the hydrolysis of NTP to NDP and Pi, and thus it can be considered as an RNA helicase activity. In the in vitro assay used, the PPV CI protein was only able to unwind double strand RNA substrates with 3' single strand overhangs. This result indicates that the helicase activity of the PPV CI protein functions in the 3' to 5' direction (6). To our knowledge, this is the first report on a helicase activity associated with a protein encoded by an RNA virus.  相似文献   

10.
Studies on viral capsid architectures and coat protein folds have revealed the evolutionary lineages of viruses branching to all three domains of life. A widespread group of icosahedral tailless viruses, the PRD1-adenovirus lineage, was the first to be established. A double β-barrel fold for a single major capsid protein is characteristic of these viruses. Similar viruses carrying genes coding for two major capsid proteins with a more complex structure, such as Thermus phage P23-77 and haloarchaeal virus SH1, have been isolated. Here, we studied the host range, life cycle, biochemical composition, and genomic sequence of a new isolate, Haloarcula hispanica icosahedral virus 2 (HHIV-2), which resembles SH1 despite being isolated from a different location. Comparative analysis of these viruses revealed that their overall architectures are very similar except that the genes for the receptor recognition vertex complexes are unrelated even though these viruses infect the same hosts.  相似文献   

11.
The infection cycle of viruses creates many opportunities for the exchange of genetic material with the host. Many viruses integrate their sequences into the genome of their host for replication. These processes may lead to the virus acquisition of host sequences. Such sequences are prone to accumulation of mutations and deletions. However, in rare instances, sequences acquired from a host become beneficial for the virus. We searched for unexpected sequence similarity among the 900,000 viral proteins and all proteins from cellular organisms. Here, we focus on viruses that infect metazoa. The high-conservation analysis yielded 187 instances of highly similar viral-host sequences. Only a small number of them represent viruses that hijacked host sequences. The low-conservation sequence analysis utilizes the Pfam family collection. About 5% of the 12,000 statistical models archived in Pfam are composed of viral-metazoan proteins. In about half of Pfam families, we provide indirect support for the directionality from the host to the virus. The other families are either wrongly annotated or reflect an extensive sequence exchange between the viruses and their hosts. In about 75% of cross-taxa Pfam families, the viral proteins are significantly shorter than their metazoan counterparts. The tendency for shorter viral proteins relative to their related host proteins accounts for the acquisition of only a fragment of the host gene, the elimination of an internal domain and shortening of the linkers between domains. We conclude that, along viral evolution, the host-originated sequences accommodate simplified domain compositions. We postulate that the trimmed proteins act by interfering with the fundamental function of the host including intracellular signaling, post-translational modification, protein-protein interaction networks and cellular trafficking. We compiled a collection of hijacked protein sequences. These sequences are attractive targets for manipulation of viral infection.  相似文献   

12.
Canine parvovirus (CPV) emerged as a new pandemic pathogen of dogs in the 1970s and is closely related to feline panleukopenia virus (FPV), a parvovirus of cats and related carnivores. Although both viruses have wide host ranges, analysis of viral sequences recovered from different wild carnivore species, as shown here, demonstrated that >95% were derived from CPV-like viruses, suggesting that CPV is dominant in sylvatic cycles. Many viral sequences showed host-specific mutations in their capsid proteins, which were often close to sites known to control binding to the transferrin receptor (TfR), the host receptor for these carnivore parvoviruses, and which exhibited frequent parallel evolution. To further examine the process of host adaptation, we passaged parvoviruses with alternative backgrounds in cells from different carnivore hosts. Specific mutations were selected in several viruses and these differed depending on both the background of the virus and the host cells in which they were passaged. Strikingly, these in vitro mutations recapitulated many specific changes seen in viruses from natural populations, strongly suggesting they are host adaptive, and which were shown to result in fitness advantages over their parental virus. Comparison of the sequences of the transferrin receptors of the different carnivore species demonstrated that many mutations occurred in and around the apical domain where the virus binds, indicating that viral variants were likely selected through their fit to receptor structures. Some of the viruses accumulated high levels of variation upon passage in alternative hosts, while others could infect multiple different hosts with no or only a few additional mutations. Overall, these studies demonstrate that the evolutionary history of a virus, including how long it has been circulating and in which hosts, as well as its phylogenetic background, has a profound effect on determining viral host range.  相似文献   

13.
Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMV protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac‐RETVRFQSD) at 1.7‐Å resolution. As observed in several crystal structures of TEV protease, the C‐terminus (~20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by ~10‐fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1′ position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters kcat and Km for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease.  相似文献   

14.
Phycodnaviruses are large dsDNA, algal-infecting viruses that encode many genes with homologs in prokaryotes and eukaryotes. Among the viral gene products are the smallest proteins known to form functional K(+) channels. To determine if these viral K(+) channels are the product of molecular piracy from their hosts, we compared the sequences of the K(+) channel pore modules from seven phycodnaviruses to the K(+) channels from Chlorella variabilis and Ectocarpus siliculosus, whose genomes have recently been sequenced. C. variabilis is the host for two of the viruses PBCV-1 and NY-2A and E. siliculosus is the host for the virus EsV-1. Systematic phylogenetic analyses consistently indicate that the viral K(+) channels are not related to any lineage of the host channel homologs and that they are more closely related to each other than to their host homologs. A consensus sequence of the viral channels resembles a protein of unknown function from a proteobacterium. However, the bacterial protein lacks the consensus motif of all K(+) channels and it does not form a functional channel in yeast, suggesting that the viral channels did not come from a proteobacterium. Collectively, our results indicate that the viruses did not acquire their K(+) channel-encoding genes from their current algal hosts by gene transfer; thus alternative explanations are required. One possibility is that the viral genes arose from ancient organisms, which served as their hosts before the viruses developed their current host specificity. Alternatively the viral proteins could be the origin of K(+) channels in algae and perhaps even all cellular organisms.  相似文献   

15.
PRD1 is the type virus of the Tectiviridae family. Its linear double-stranded DNA genome has covalently attached terminal proteins and is surrounded by a membrane, which is further enclosed within an icosahedral protein capsid. Similar to tailed bacteriophages, PRD1 packages its DNA into a preformed procapsid. The PRD1 putative packaging ATPase P9 is a structural protein located at a unique vertex of the capsid. An in vitro system for packaging DNA into preformed empty procapsids was developed. The system uses cell extracts of overexpressed P9 protein and empty procapsids from a P9-deficient mutant virus infection and PRD1 DNA containing a LacZalpha-insert. The in vitro packaged virions produce distinctly blue plaques when plated on a suitable host. This is the first time that a viral genome is packaged in vitro into a membrane vesicle. Comparison of PRD1 P9 with putative packaging ATPase sequences from bacterial, archaeal and eukaryotic viruses revealed a new packaging ATPase-specific motif. Surprisingly the viruses having this packaging ATPase motif, and thus considered to be related, were the same as those recently grouped together using the coat protein fold and virion architecture. Our finding here strongly supports the idea that all these viruses infecting hosts in all domains of life had a common ancestor.  相似文献   

16.
H Liu  Y Fu  J Xie  J Cheng  SA Ghabrial  G Li  X Yi  D Jiang 《PloS one》2012,7(7):e42147
Genome sequence of viruses can contribute greatly to the study of viral evolution, diversity and the interaction between viruses and hosts. Traditional molecular cloning methods for obtaining RNA viral genomes are time-consuming and often difficult because many viruses occur in extremely low titers. DsRNA viruses in the families, Partitiviridae, Totiviridae, Endornaviridae, Chrysoviridae, and other related unclassified dsRNA viruses are generally associated with symptomless or persistent infections of their hosts. These characteristics indicate that samples or materials derived from eukaryotic organisms used to construct cDNA libraries and EST sequencing might carry these viruses, which were not easily detected by the researchers. Therefore, the EST databases may include numerous unknown viral sequences. In this study, we performed in silico cloning, a procedure for obtaining full or partial cDNA sequence of a gene by bioinformatics analysis, using known dsRNA viral sequences as queries to search against NCBI Expressed Sequence Tag (EST) database. From this analysis, we obtained 119 novel virus-like sequences related to members of the families, Endornaviridae, Chrysoviridae, Partitiviridae, and Totiviridae. Many of them were identified in cDNA libraries of eukaryotic lineages, which were not known to be hosts for these viruses. Furthermore, comprehensive phylogenetic analysis of these newly discovered virus-like sequences with known dsRNA viruses revealed that these dsRNA viruses may have co-evolved with respective host supergroups over a long evolutionary time while potential horizontal transmissions of viruses between different host supergroups also is possible. We also found that some of the plant partitiviruses may have originated from fungal viruses by horizontal transmissions. These findings extend our knowledge of the diversity and possible host range of dsRNA viruses and offer insight into the origin and evolution of relevant viruses with their hosts.  相似文献   

17.
The gene encoding the C-terminal protease domain of the nuclear inclusion protein a (NIa) of tobacco vein mottling virus (TVMV) was cloned from an isolated virus particle and expressed as a fusion protein with glutathione S-transferase in Escherichia coli XL1-blue. The 27-kDa protease was purified from the fusion protein by glutathione affinity chromatography and Mono S chromatography. The purified protease exhibited the specific proteolytic activity towards the nonapeptide substrates, Ac-Glu-Asn-Asn-Val-Arg-Phe-Gln-Ser-Leu-amide and Ac-Arg-Glu-Thr-Val-Arg-Phe-Gln-Ser-Asp-amide, containing the junction sequences between P3 protein and cylindrical inclusion protein and between nuclear inclusion protein b and capsid protein, respectively. The Km and kcat values were about 0.2 mM and 0.071 s–1, respectively, which were approximately five-fold lower than those obtained for the NIa protease of turnip mosaic potyvirus (TuMV), suggesting that the TVMV NIa protease is different in the binding affinity as well as in the catalytic power from the TuMV NIa protease. In contrast to the NIa proteases from TuMV and tobacco etch virus, the TVMV NIa protease was not autocatalytically cleaved into smaller proteins, indicating that the C-terminal truncation is not a common phenomenon occurring in all potyviral NIa proteases. These results suggest that the TVMV NIa protease has a unique biochemical property distinct from those of other potyviral proteases.  相似文献   

18.
Tobacco vein mottling virus (TVMV) belongs to the potyviridae that consists of about 200 plant viruses. Potyviruses have RNA genomes of approximately 10,000 bases from which a single polyprotein is expressed from each virus upon infection. The NIa proteinase is known to process the polyprotein at seven distinct junctions between proteins. Kinetic constants were determined for the reactions of the recombinant TVMV NIa protease (27 kDa) with synthetic oligopeptides containing the sequences for the cleavage sites. For optimum activity, the substrate needs to have six amino acids (P6–P1) in the amino region and four (P1–P4) in the carboxy region, including four conserved amino acids (V-R-F-Q) in P4P1 positions. Mutation of any of four conserved amino acids to Gly made the substrate inert to the enzyme. Among the substrates, the oligopeptides containing the sequences for junctions, P3–6K1, NIa (VPg-Pro), and NIa-NIb were not processed by the NIa protease. Those junctions have Glu at P3, Glu at P1, and Thr at P2. The implications of high substrate specificity and size dependence in polyprotein processing and viral replication are discussed.  相似文献   

19.
基因组学技术, 特别是宏基因组测序在未知病毒的鉴定与溯源中起到了重要作用。相较于传统的病毒分离培养方法, 宏基因组技术可以从混合样本中获得病毒的核酸序列, 极大加速了未知病毒的鉴定与溯源, 在针对高流行性、高致病性的病毒研究中发挥了重要作用。基于宏基因组技术对未知病毒进行鉴定和溯源, 其准确性很大程度上依赖于取样及已知宿主的病毒库的完整性。然而, 当前病毒多样性的基础研究相对薄弱, 病毒的宿主信息则更加匮乏。野生动物和畜禽是人畜共患病致病病毒的重要中间宿主, 构建广泛的动物-病毒关联数据库对于准确、快速地鉴定和预防致病性病毒具有重要意义。本综述以SARS-CoV-2为例, 总结了基因组学技术在病毒的鉴定与溯源上的应用, 并针对当前动物病毒库完整性低的现状, 对构建野生和家养动物携带病毒的关联数据库的可行性提出依据与建议。  相似文献   

20.
傅天韵  娄维义  石铁流 《遗传》2010,32(7):701-711
2009年全球性爆发的H1N1病毒已经导致213个国家和地区受到感染, 有16 226人死亡。病毒与宿主细胞表面受体的结合是病毒感染不可缺少的第一步, 从而导致病毒膜与宿主细胞膜的融合。血凝素(Hemagglutinin, HA)就是介导这种受体结合与膜融合的病毒蛋白, 受体结合位点(Receptor binding sites, RBSs)位于HA蛋白三聚体中每个单体的球形头部, 主要由190位螺旋(190~198aa)、130位环(135~138aa)和220位环(221~228)3个二级结构域组成。文章收集了1918~2009年间1 221株H1N1病毒株的HA1序列(长度为327个氨基酸残基), 通过序列比对、各位点氨基酸残基的熵值以及3D结构模拟等生物信息学研究。结果显示不同宿主的不同病毒RBSs具有不同的熵值, 而且不同宿主的病毒HA1其RBSs具有不同的优势序列。3D结构模拟也显示了H1N1不同HA1之间在190位螺旋构象上的细微差异。该研究揭示了不同HA1上RBSs的一些新的特征, 为进一步探讨病毒感染的机理提供了新的信息  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号