首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The development of bacteriophage T7 was examined in an Escherichia coli double mutant defective for the two major apurinic, apyrimidinic endonucleases (exonuclease III and endonuclease IV, xth nfo). In cells infected with phages containing apurinic sites, the defect in repair enzymes led to a decrease of phage survival and a total absence of bacterial DNA degradation and of phage DNA synthesis. These results directly demonstrate the toxic action of apurinic sites on bacteriophage T7 at the intracellular level and its alleviation by DNA repair. In addition, untreated T7 phage unexpectedly displayed reduced plating efficiency and decreased DNA synthesis in the xth nfo double mutant.  相似文献   

5.
6.
7.
Computer simulation of T3/T7 phage infection using lag times   总被引:2,自引:0,他引:2  
  相似文献   

8.
L Roberts  P Sadowski  J T Wong 《Biochemistry》1982,21(23):6000-6005
Bacteriophage T7 codes for a single-stranded DNA binding protein. This protein is the product of gene 2.5 and has been found previously to stimulate specifically the activity of the phage-coded DNA polymerase. We report here that the T7 DNA binding protein also stimulates the activity of the phage-coded exonuclease. The gene 6 exonuclease is a double-stranded DNA specific 5'-exonuclease that has been implicated in destruction of bacterial DNA, removal of RNA primers during DNA replication, genetic recombination, and DNA maturation. The enzyme is markedly inhibited by physiological concentrations of NaCl. This inhibition, which is due to a marked reduction in the Vmax of the enzyme, can be largely overcome by the phage-coded DNA binding protein. This stimulation is specific since the Escherichia coli DNA binding protein is without effect. The stimulation by the binding protein is apparently not due to its coating of the 3' single-stranded tails generated during the digestion. Kinetic studies show that the stimulation is due to a combined effect on both the Km and Vmax of the exonuclease. These studies are consistent with a loose binding of the binding protein to either the DNA or the exonuclease.  相似文献   

9.
Three genetically defined Actinobacillus pleuropneumoniae serotype 7 mutants with deletions in the small (tbpB), the large (tbpA), and both transferrin binding protein genes were constructed and examined in an aerosol infection model. Neither mutant caused clinical disease or could be reisolated, and no immune response could be detected 21 days after infection. This result clearly implies that each transferrin binding protein on its own is a virulence factor of A. pleuropneumoniae serotype 7.  相似文献   

10.
A disulfide-bridged variant of bacteriophage T4 lysozyme has been found to undergo a low- as well as high-temperature unfolding transition in guanidinium chloride [see Chen and Schellman (1989)]. The kinetics for this process have been followed for several temperatures, a range of guanidinium chloride concentrations, and a number of values of pH. Microscopic rate constants for protein unfolding and refolding were extracted from these data to explore the nature of the cold unfolding transition. The data were interpreted using transition-state theory. It was found that the Arrhenius energy is temperature dependent. The transition state is characterized by (1) a high energy and low entropy compared to the native state, (2) a heat capacity which is closer to the native state than to the unfolded state, and (3) a low exposure to solvent compared to the unfolded state, as judged by its interaction with guanidinium chloride. With increasing concentration of guanidinium chloride, the low-temperature unfolding rate increases strongly, and the refolding rate decreases very strongly.  相似文献   

11.
The fifth phage resistance factor from the prototype phage-insensitive strain Lactococcus lactis subsp. lactis ME2 has been characterized and sequenced. The genetic determinant for Prf (phage resistance five) was subcloned from the conjugative plasmid pTN20, which also encodes a restriction and modification system. Typical of other abortive resistance mechanisms, Prf reduces the efficiency of plaquing to 10(-2) to 10(-3) and decreases the plaque size and burst size of the small isometric-headed phage p2 in L. lactis subsp. lactis LM0230. However, normal-size plaques occurred at a frequency of 10(-4) and contained mutant phages that were resistant to Prf, even after repeated propagation through a sensitive host. Prf does not prevent phage adsorption or promote restriction and modification activities, but 90% of Prf+ cells infected with phage p2 die. Thus, phage infections in Prf+ cells are aborted. Prf is effective in both L. lactis subsp. lactis and L. lactis subsp. cremoris strains against several small isometric-headed phages but not against prolate-headed phages. The Prf determinant was localized by Tn5 mutagenesis and subcloning. DNA sequencing identified a 1,056-nucleotide structural gene designated abiC. Prf+ expression was obtained when abiC was subcloned into the lactococcal expression vector pMG36e. abiC is distinct from two other lactococcal abortive phage resistance genes, abiA (Hsp+, from L. lactis subsp. lactis ME2) and abi416 (Abi+, from L. lactis subsp. lactis IL416). Unlike abiA, the action of abiC does not appear to affect DNA replication. Thus, abiC represents a second abortive system found in ME2 that acts at a different point of the phage lytic cycle.  相似文献   

12.
13.
14.
galU and rpsL mutations restore plating efficiency of bacteriophage T7 in male Escherichia coli without suppressing leakage of adenosine 5'-triphosphate pools.  相似文献   

15.
16.
During the production of fermented dairy products, virulent bacteriophages infecting Lactococcus lactis can delay or stop the milk acidification process. A solution to this biological problem consists of introducing natural phage barriers into the strains used by the dairy industry. One such hurdle is called abortive infection (Abi) and causes premature cell death with no or little phage progeny. Here, we describe the isolation and characterization of a novel Abi mechanism encoded by plasmid pED1 from L. lactis. The system is composed of two constitutively cotranscribed genes encoding putative proteins of 127 and 213 amino acids, named AbiTi and AbiTii, respectively. Site-directed mutagenesis indicated that a hydrophobic region at the C-terminal extremity of AbiTi is essential to the antiphage phenotype. The AbiT system is effective against phages of the 936 and P335 species (efficiency of plaquing between 10(-5) and 10(-7)) and causes a 20-fold reduction in the efficiency to form centers of infection as well as a 10- to 12-fold reduction in the burst size. Its efficacy could be improved by raising the plasmid copy number, but changing the intrinsic ratio of AbiTi and AbiTii did not greatly affect the antiphage activity. The monitoring of the intracellular phage infection process by DNA replication, gene expression, and electron microscopy as well as the study of phage mutants by genome mapping indicated that AbiT is likely to act at a later stage of the phage lytic cycle.  相似文献   

17.
18.
19.
20.
Phage bIL66M1 is sensitive to the lactococcal abortive infection mechanism AbiP. No spontaneous AbiP-resistant variant could be obtained at a frequency of <10(-10). However, AbiP-resistant variants were readily obtained during infection with both bIL66M1 and the highly homologous AbiP-resistant phage bIL170. Gain of AbiP resistance was due to the acquisition of the e6 gene from bIL170.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号