首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Genetic diversity and structure within a Lima bean (Phaseolus lunatus L.) base collection have been evaluated using allozyme markers. The results obtained from the analysis of wild and cultivated accessions confirm the existence of Andean and Mesoamerican gene pools characterised by specific alleles. Wild and cultivated accessions of the same gene pool are grouped. The Andean natural populations have a very limited geographic distribution between Ecuador and northern Peru. The Mesoamerican wild form extends from Mexico up to Argentina through the eastern side of the Andes. Andean and Mesoamerican cultivated accessions of pantropical distribution contribute substantially to the genetic diversity of the Lima bean base collection. Population genetic parameters, estimated from allozymes, confirmed the predominant selfing mating system of the Lima bean. The selfing mating system, the occurrence of small populations, and low gene flow lead to an interpopulation gene diversity (DST=0.235) higher than the intrapopulation gene diversity (HS=0.032). On the basis of the results, guidelines are given to preserve and exploit the genetic diversity of this threatened species. The results also confirm the independent domestication of the Lima bean in at least two centres, one of which is located at medium elevation in the western valleys of Ecuador and northern Peru. Received: 3 June 1997 / Accepted: 17 June 1997  相似文献   

2.
Wild common bean (Phaseolus vulgaris L.) is distributed throughout the Americas from Mexico to northern Argentina. Within this range, the species is divided into two gene pools (Andean and Middle American) along a latitudinal gradient. The diversity of 24 wild common bean genotypes from throughout the geographic range of the species was described by using sequence data from 13 loci. An isolation–migration model was evaluated using a coalescent analysis to estimate multiple demographic parameters. Using a Bayesian approach, Andean and Middle American subpopulations with high percentage of parentages were observed. Over all loci, the Middle American gene pool was more diverse than the Andean gene pool (πsil=0.0089 vs 0.0068). The two subpopulations were strongly genetically differentiated over all loci (Fst=0.29). It is estimated that the two current wild gene pools diverged from a common ancestor ∼111 000 years ago. Subsequently, each gene pool underwent a bottleneck immediately after divergence and lasted ∼40 000 years. The Middle American bottleneck population size was ∼46% of the ancestral population size, whereas the Andean was 26%. Continuous asymmetric gene flow was detected between the two gene pools with a larger number of migrants entering Middle American gene pool from the Andean gene pool. These results suggest that because of the complex population structure associated with the ancestral divergence, subsequent bottlenecks in each gene pool, gene pool-specific domestication and intense selection within each gene pool by breeders; association mapping would best be practised within each common bean gene pool.  相似文献   

3.
Evidence for genetic diversity in cultivated common bean (Phaseolus vulgaris) is reviewed. Multivariate statistical analyses of morphological, agronomic, and molecular data, as well as other available information on Latin American landraces representing various geographical and ecological regions of their primary centers of domestications in the Americas, reveal the existence of two major groups of germplasm: Middle American and Andean South American, which could be further divided into six races. Three races originated in Middle America (races Durango, Jalisco, and Mesoamerica) and three in Andean South America (races Chile, Nueva Granada, and Peru). Their distinctive characteristics and their relationships with previously reported gene pools are discussed.  相似文献   

4.
Common beans (Phaseolus vulgaris L.) have centers of origin in both Mesoamerica and Andean South America, and have been domesticated in each region for perhaps 5000 years. A third major gene pool may exist in Ecuador and Northern Peru. The diversity of the rhizobia associated with beans has also been studied, but to date with an emphasis on the Mesoamerican center of origin. In this study we compared bean rhizobia from Mexico and Andean South America using both phenotypic and phylogenetic approaches. When differences between the rhizobia of these two regions were shown, we then examined the influence of bean cultivar on the most probable number (MPN) count and biodiversity of rhizobia recovered from different soils. Three clusters of bean rhizobia were distinguished using phenotypic analysis and principal-component analysis of Box AIR-PCR banding patterns. They corresponded principally to isolates from Mexico, and the northern and southern Andean regions, with isolates from southern Ecuador exhibiting significant genetic diversity. Rhizobia from Dalea spp., which are infective and effective on beans, may have contributed to the apparent diversity of rhizobia recovered from the Mesoamerican region, while the rhizobia of wild Phaseolus aborigineus from Argentina showed only limited similarity to the other bean rhizobia tested. Use of P. vulgaris cultivars from the Mesoamerican and Andean Phaseolus gene pools as trap hosts did not significantly affect MPN counts of bean rhizobia from the soils of each region, but did influence the diversity of the rhizobia recovered. Such differences in compatibility of host and Rhizobium could be a factor in the poor reputation for nodulation and N2 fixation in this crop.  相似文献   

5.
V L Velasquez  P Gepts 《Génome》1994,37(2):256-263
Eighty-five wild and cultivated accessions of common bean (Phaseolus vulgaris L.), representing a wide geographic area in the centres of domestication were tested for restriction fragment length polymorphisms (RFLPs). Genomic DNA was digested with one of three restriction enzymes (EcoRI, EcoRV, and HindIII) and hybridized to 12 probes distributed throughout the common bean genome. Accessions could be classified into two major groups with a distinct geographical distribution in Middle America and the Andes. Within each gene pool, cultivated accessions clustered together with wild forms from the same geographical area supporting the multiple domestications hypothesis for this crop. Estimates of Nei's genetic distances among the cultivated races from the two different gene pools varied from 0.12 to 0.56 and among races from the same gene pool from 0.04 to 0.12, suggesting that the divergence in Phaseolus vulgaris has reached the subspecies level. The level of genetic diversity (Ht = 0.38) was twice the value obtained with isozyme analysis. Genetic diversity within races (Hs = 0.27) was four to five times higher compared with isozymes, but genetic diversity between races (Dst = 0.11) was similar for both categories of markers. These results corroborate previous studies on the characterization of genetic diversity in common bean that clearly showed two distinct gene pools, Middle American and Andean. Moreover, RFLP markers are superior to isozymes because they provide better coverage of the genome and reveal higher level of polymorphisms.  相似文献   

6.
Aim  A panbiogeographical analysis of the genus Bomarea was undertaken in order to determine generalized tracks and biogeographical nodes, and to evaluate the current distribution of the genus based on the available tectonic information and the biogeographical regionalization of Latin America.
Location  The Neotropical region from northern Mexico to northern Argentina, and the Nearctic and Andean regions.
Method  A total of 2205 records of 101 species were analysed, representing 95% of the species assigned to Bomarea . Localities were represented on maps and their individual tracks were drawn. Based on their comparison, generalized tracks were detected and mapped. Nodes were identified in the areas where different generalized tracks were superimposed.
Results  Five generalized tracks were recovered. One is located in the Eastern Central America and Western Panamanian Isthmus provinces (Caribbean subregion, Neotropical region), which was supported by three species of Central American distribution. The four remaining generalized tracks were located in South America, in the North Andean Paramo, Cauca and Puna biogeographical provinces. These tracks were supported by species of Bomarea with an Andean distribution. Biogeographical nodes were established in the Central Andean region of Colombia, central Ecuador and central Peru.
Main conclusions  The nodes obtained for Bomarea support a hybrid origin for the Andean region, which presents diverse components from both northern and southern South America. Likewise, the track recovered between Colombia and Ecuador includes Andean and Neotropical areas, providing further support for this hypothesis. The nodes obtained are coherent with vicariant elements evident for Bomarea. Species of three clades proposed for Bomarea are distributed in specific generalized tracks.  相似文献   

7.
Progress in bean breeding programs requires the exploitation of genetic variation that is present among races or through introgression across gene pools of Phaseolus vulgaris L. Of the two major common bean gene pools, the Andean gene pool seems to have a narrow genetic base, with about 10% of the accessions in the CIAT core collection presenting evidence of introgression. The objective of this study was to quantify the degree of spontaneous introgression in a sample of common bean landraces from the Andean gene pool. The effects of introgression on morphological, economic and nutritional attributes were also investigated. Homogeneity analysis was performed on molecular marker data from 426 Andean-type accessions from the primary centres of origin of the CIAT common bean core collection and two check varieties. Quantitative attribute diversity for 15 traits was studied based on the groups found from the cluster analysis of marker prevalence indices computed for each accession. The two-group summary consisted of one group of 58 accessions (14%) with low prevalence indices and another group of 370 accessions (86%) with high prevalence indices. The smaller group occupied the outlying area of points displayed from homogeneity analysis, yet their geographic origin was widely distributed over the Andean region. This group was regarded as introgressed, since its accessions displayed traits that are associated with the Middle American gene pool: high resistance to Andean disease isolates but low resistance to Middle American disease isolates, low seed weight and high scores for all nutrient elements. Genotypes generated by spontaneous introgression can be helpful for breeders to overcome the difficulties in transferring traits between gene pools.Communicated by H.C. Becker  相似文献   

8.
WildPhaseolus vulgaris is distributed between northern Mexico and northern Argentina. Analysis of phaseolin and molecular markers (isozymes, Restriction Fragment Length Polymorphisms or RFLPs) indicate that this gene pool consists of two major groups, Mesoamerican and Andean, and a third intermediate group found in northwestern South America. Previous to this study, only four accessions of wildP. vulgaris beans from Bolivia had been collected and their genetic relationship with other wild beans from Latin America was not known. Due to the problem of intense erosion in some areas of Bolivia, it was our objective to survey and documentPhaseolus spp. in this area before their extinction. We conducted a collection expedition in May 1994 in the departments of Cochabamba, Chuquisaca and Tarija. This resulted in collections of four populations ofP. augusti, two of cultivatedP. lunatus and two mixtures of cultivatedP. vulgaris. The first mixture was made of “k’opurus” or beans consumed after toasting, and represented an addition of 17 accessions to the Bolivian collection. The second mixture was made of “porotos” and resulted in the addition of 10 new accessions. Seven germplasm collections of wildP. vulgaris were found, which allowed us to increase the number of known populations of wild common bean for Bolivia. Another accession was found as a wild-weed-crop complex. Seven of these wildP. vulgaris accessions along with another accession from Bolivia collected previously, and a number of P. vulgaris accessions from Mexico (17), Guatemala (3), Colombia (10), Ecuador (6), Peru (17) and Argentina (16) were analyzed with RAPDs. The use of 14 random primers and one SCAR (Sequence Characterized Amplified Region) resulted in 90 bands, of which 83 were polymorphic. This data was used to construct a dendrogram which shows clear separation into three clusters, corresponding to each of the gene pools and an intermediate group. The Bolivian wild P. vulgaris beans grouped with the accessions of southern Peru and Argentina into the Andean gene pool. RAPD analysis of genetic diversity correlated well with genetic diversity obtained with other markers. Moreover, the ease of analysis allowed us to obtain a large number of bands which was conducive to greater sensitivity and identification of geographic subgroups and accessions of hybrid origin.  相似文献   

9.
The Andean gene pool of common bean (Phaseolus vulgaris L.) has high levels of morphological diversity in terms of seed color and size, growth habit and agro-ecological adaptation, but previously was characterized by low levels of molecular marker diversity. Three races have been described within the Andean gene pool: Chile, Nueva Granada and Peru. The objective of this study was to characterize a collection of 123 genotypes representing Andean bean diversity with 33 microsatellite markers that have been useful for characterizing race structure in common beans. The genotypes were from both the primary center of origin as well as secondary centers of diversity to which Andean beans spread and represented all three races of the gene pool. In addition we evaluated a collection of landraces from Colombia to determine if the Nueva Granada and Peru races could be distinguished in genotypes from the northern range of the primary center. Multiple correspondence analyses of the Andean race representatives identified two predominant groups corresponding to the Nueva Granada and Peru races. Some of the Chile race representatives formed a separate group but several that had been defined previously as from this race grouped with the other races. Gene flow was more notable between Nueva Granada and Peru races than between these races and the Chile race. Among the Colombian genotypes, the Nueva Granada and Peru races were identified and introgression between these two races was especially notable. The genetic diversity within the Colombian genotypes was high, reaffirming the importance of this region as an important source of germplasm. Results of this study suggest that the morphological classification of all climbing beans as Peru race genotypes and all bush beans as Nueva Granada race genotypes is erroneous and that growth habit traits have been mixed in both races, requiring a re-adjustment in the concept of morphological races in Andean beans.  相似文献   

10.
More than 18,000 accessions of common bean (Thaseolus vulgaris, Fabaceae) from the Centro Internacional de Agricultura Tropical (CIAT) germplasm bank were examined at two locations in Colombia. A large variation in cultivated dry bean was found among accessions from primary centers of domestication in Middle and South America. For some bean types, such as medium- and large-seeded white, variation was greater among germplasm from western Asia (Turkey) and Europe (Portugal, Spain, Greece, France, Italy, and Bulgaria). Based on growth habit, on seed, pod, and leaf characteristics, and on ecological regions of adaptation, dry-bean germplasm was divided into a total of six gene pools from Middle American and four gene pools from South American centers of domestication. Most of the variation in the snap or stringless bean appears to be of relatively recent origin; it was greatest among cultivars from China, Europe, and the United States. These could be grouped into two additional gene pools. A strategy for breeding and transfer of genes across gene pools is also discussed.  相似文献   

11.
The aims of this research were to assess the genetic structure of wild Phaseolus lunatus L. in the Americas and the hypothesis of a relatively recent Andean origin of the species. For this purpose, nuclear and non-coding chloroplast DNA markers were analyzed in a collection of 59 wild Lima bean accessions and six allied species. Twenty-three chloroplast and 28 nuclear DNA haplotypes were identified and shown to be geographically structured. Three highly divergent wild Lima bean gene pools, AI, MI, and MII, with mostly non-overlapping geographic ranges, are proposed. The results support an Andean origin of wild Lima beans during Pleistocene times and an early divergence of the three gene pools at an age that is posterior to completion of the Isthmus of Panama and major Andean orogeny. Gene pools would have evolved and reached their current geographic distribution mainly in isolation and therefore are of high priority for conservation and breeding programs.  相似文献   

12.
Phaseolin seed protein variability in a group of 8 wild and 77 cultivated common bean (Phaseolus vulgaris) accessions was determined using 1-dimensional SDS/ PAGE and 2-dimensional IEF-SDS/PAGE. Wild common bean accessions exhibited the 'CH' and 'B' patterns, previously undescribed among either wild or cultivated common beans. The cultivated genotypes showed (in decreasing frequency) the previously described 'S,' T,' and 'C phaseolin patterns as well as the new 'B' pattern similar to the pattern identified in a Colombian wild common bean accession. In the northeastern part of the Colombian bean-growing region, the cultivars exhibited almost exclusively an 'S' phaseolin type, while in the south-western part, the 'T' and 'C phaseolin cultivars were more frequent. Seed size analysis indicated that 'T' and 'C' phaseolin cultivars had larger seeds than 'S' and 'B' phaseolin cultivars. Our results suggest that Colombia is a meeting place for Andean and Middle American common bean germplasms, as well as a domestication center for the common bean.  相似文献   

13.
14.
Genetic diversity within a common bean ( Phaseolus vulgaris L.) collection, comprising 343 accessions from the Iberian Peninsula, was examined using six allozyme markers. Two major clusters corresponding to the Andean and Mesoamerican gene pools were identified. Both gene pools were characterized by specific alleles, with the former exhibiting Skdh(100), Me(100), Rbcs(100 or 98) and Diap-1(100), and the latter exhibiting Skdh(103), Me(100), Rbcs(100) and Diap-1(95). Some accessions from both clusters, deviating from these allozyme patterns, exhibited Skdh(100), Me(100), Rbcs(100) and Diap-1(95) or Skdh(103), Me(100), Rbcs(100) and Diap-1(100) allozyme profiles and were considered as putative hybrids.The levels of genetic variation has not been eroded since the introduction of the common bean from the American centers of domestication to the Iberian Peninsula. Instead, obvious signs of introgression between the two gene pools were observed, mainly among white-seeded genotypes. The intermediate forms adapted to the Iberian Peninsula could have emerged from initial recombination between Mesoamerican and Andean gene pools. The Iberian common bean germplasm is therefore more complex than previously thought, and contains additional diversity that remains to be explored for genetic and breeding purposes. The Iberian Peninsula could be considered as a secondary center of genetic diversity of the common bean, especially the large white-seeded genotypes.  相似文献   

15.
Domesticated materials with well-known wild relatives provide an experimental system to reveal how human selection during cultivation affects genetic composition and adaptation to novel environments. In this paper, our goal was to elucidate how two geographically distinct domestication events modified the structure and level of genetic diversity in common bean. Specifically, we analyzed the genome-wide genetic composition at 26, mostly unlinked microsatellite loci in 349 accessions of wild and domesticated common bean from the Andean and Mesoamerican gene pools. Using a model-based approach, implemented in the software STRUCTURE, we identified nine wild or domesticated populations in common bean, including four of Andean and four of Mesoamerican origins. The ninth population was the putative wild ancestor of the species, which was classified as a Mesoamerican population. A neighbor-joining analysis and a principal coordinate analysis confirmed genetic relationships among accessions and populations observed with the STRUCTURE analysis. Geographic and genetic distances in wild populations were congruent with the exception of a few putative hybrids identified in this study, suggesting a predominant effect of isolation by distance. Domesticated common bean populations possessed lower genetic diversity, higher F ST, and generally higher linkage disequilibrium (LD) than wild populations in both gene pools; their geographic distributions were less correlated with genetic distance, probably reflecting seed-based gene flow after domestication. The LD was reduced when analyzed in separate Andean and Mesoamerican germplasm samples. The Andean domesticated race Nueva Granada had the highest F ST value and widest geographic distribution compared to other domesticated races, suggesting a very recent origin or a selection event, presumably associated with a determinate growth habit, which predominates in this race. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
There is a growing call for inventories that evaluate geographic patterns in diversity of plant genetic resources maintained on farm and in species' natural populations in order to enhance their use and conservation. Such evaluations are relevant for useful tropical and subtropical tree species, as many of these species are still undomesticated, or in incipient stages of domestication and local populations can offer yet-unknown traits of high value to further domestication. For many outcrossing species, such as most trees, inbreeding depression can be an issue, and genetic diversity is important to sustain local production. Diversity is also crucial for species to adapt to environmental changes. This paper explores the possibilities of incorporating molecular marker data into Geographic Information Systems (GIS) to allow visualization and better understanding of spatial patterns of genetic diversity as a key input to optimize conservation and use of plant genetic resources, based on a case study of cherimoya (Annona cherimola Mill.), a Neotropical fruit tree species. We present spatial analyses to (1) improve the understanding of spatial distribution of genetic diversity of cherimoya natural stands and cultivated trees in Ecuador, Bolivia and Peru based on microsatellite molecular markers (SSRs); and (2) formulate optimal conservation strategies by revealing priority areas for in situ conservation, and identifying existing diversity gaps in ex situ collections. We found high levels of allelic richness, locally common alleles and expected heterozygosity in cherimoya's putative centre of origin, southern Ecuador and northern Peru, whereas levels of diversity in southern Peru and especially in Bolivia were significantly lower. The application of GIS on a large microsatellite dataset allows a more detailed prioritization of areas for in situ conservation and targeted collection across the Andean distribution range of cherimoya than previous studies could do, i.e. at province and department level in Ecuador and Peru, respectively.  相似文献   

17.
The BV1 gene of the bipartite Begomovirus genome encodes a nuclear shuttle protein (NSP) that is also an avirulence determinant in common bean. The function of the NSP of two common bean-infecting bipartite begomoviruses, Bean dwarf mosaic virus (BDMV) and Bean golden yellow mosaic virus (BGYMV), was investigated using a series of hybrid DNA-B components expressing chimeric BDMV and BGYMV NSP, and genotypes of the two major common bean gene pools: Andean (cv. Topcrop) and Middle American (cvs. Alpine and UI 114). BDMV DNA-A coinoculated with HBDBG4 (BDMV DNA-B expressing the BGYMV NSP) and HBDBG9 (BDMV DNA-B expressing a chimeric NSP with the N-terminal 1 to 42 amino acids from BGYMV) overcame the BDMV resistance of UI 114. This established that the BDMV NSP is an avirulence determinant in UI 114, and mapped the domain involved in this response to the N-terminus, which is a variable surface-exposed region. BDMV DNA-A coinoculated with HBDBG10, expressing a chimeric NSP with amino acids 43 to 92 from BGYMV, was not infectious, revealing an essential virus-specific domain. In the BGYMV background, the BDMV NSP was a virulence factor in the Andean cv. Topcrop, whereas it was an avirulence factor in the Middle American cultivars, particularly in the absence of the BGYMV NSP. The capsid protein (CP) also played a gene pool-specific role in viral infectivity; it was dispensable for infectivity in the Andean cv. Topcrop, but was required for infectivity of BDMV, BGYMV, and certain hybrid viruses in the Middle American cultivars. Redundancy of the CP and NSP, which are nuclear proteins involved directly or indirectly in viral movement, provides a masking effect that may allow the virus to avoid host defense responses.  相似文献   

18.
The pepino (Solanum muricatum) is a vegetatively propagated, domesticated native of the Andes, where it grows with wild relatives. We used AFLPs and a 1-kb sequence of the 3-methylcrotonyl-CoA carboxylase gene to study variation of 27 accessions of S. muricatum and 35 collections of 10 species of wild relatives (Solanum section Basarthrum). A total of 298 AFLP fragments and 29 DNA sequence haplotypes were detected. Cluster and principal coordinate analyses and other genetic parameters estimated from both types of markers, show that S. muricatum is closely related to the species from one of the series (Caripensia) of section Basarthrum and that >90% of the variation of the cultigen is also represented in that series. Pepino is highly diverse, either because it is not monophyletic or it has been subjected to regular introgression with wild species, or both. Although a continuous distribution of the genetic variation occurred within the cultivated species, three genetic clusters were recognized. Cluster 1 is mostly centered in Ecuador, cluster 2 in Ecuador and Peru, and cluster 3 in Colombia and Ecuador. Cluster 3 also includes all modern cultivars studied. These results and other evidence suggest that northern Ecuador/southern Colombia is the main center of pepino diversity and the center of origin. The high genetic variation of this cultigen indicates that domestication does not always produce a genetic bottleneck.  相似文献   

19.
Lectin-related polypeptides are a class of defence proteins found in seeds of Phaseolus species. In Lima bean (P. lunatus), these proteins and their genes have been well characterized in the Andean morphotype, which represents one of the two gene pools of this species. To study the molecular evolution of the lectin family in Lima bean we characterized the polypeptides belonging to this multigene family and cloned the genes belonging to the Mesoamerican gene pool. The latter gene pool contains components similar to those of the Andean pool, namely: an amylase inhibitor-like (AIL), an arcelin-like (ARL) lectin and the less abundant Lima bean lectin (LBL). These proteins originate from an ancestor gene of the lectin type which duplicated to yield the lectin gene and the progenitor of ARL and AIL. In this species. ARL represents an evolutionary intermediate form that precedes AIL. Phylogenetic analysis supports an Andean origin for Lima bean. The molecular evolutionary studies were extended to the genes of common bean and demonstrated that true lectin genes and the ancestor of lectin-related genes are the result of a duplication event that occurred before speciation. Lima and common bean followed different evolutionary pathways and in the latter species a second duplication event occurred that gave rise, in Mesoamerican wild genotypes, to arcelin genes.  相似文献   

20.
A sample of 106 wild forms and 99 landraces of common bean (Thaseolus vulgaris) from Middle America and the Andean region of South America were screened for variability in phaseolin seed protein using one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS/PAGE) and two-dimensional isoelectric focusing SDS/PAGE. The Middle American wild forms exhibited phaseolin patterns similar to the ‘S’ pattern described previously in cultivated forms, as well as a wide variety of additional banding patterns—‘M’ (Middle America) types—not encountered among common bean cultivars. The Andean wild forms showed only the ‘T’ phaseolin pattern, also described previously among cultivated forms. Landraces from Middle America showed ‘S’ or ‘S’-like patterns with the exception of 2 lines with ‘T’ phaseolin. In Andean South America, a majority of landraces had the ‘T’ phaseolin. Additional types represented in that region were (in decreasing order of frequency) the ‘S’ and ‘C’ types (already described among cultivated forms) as well as the ‘H’ (Huevo de huanchaco) and ‘A’ (Ayacucho), (new patterns previously undescribed among wild and cultivated beans). In each region—Middle America and Andean South America—the seeds of landraces with ‘T’ phaseolin were significantly larger than those of landraces with ‘S’ phaseolin. No significant differences in seed size were observed among landraces with ‘T,’ ‘C,’ ‘H,’ and ‘A’ phaseolin types of the Andean region. Our data favor 2 primary areas of domestication, one in Middle America leading to small-seeded cultivars with ‘S’ phaseolin patterns and the other in the Andes giving rise to large-seeded cultivars with ‘T’ (and possibly ‘C,’ ‘H,’ and ‘A’) phaseolin patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号