首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selenium (Se) is an essential micronutrient for vertebrates though little is known about the effects on insects. Herbivorous insect larvae acquire Se from plant tissues in the inorganic form of sodium selenate and sodium selenite, and in the organic form of selenoamino acids, selenomethionine, and selenocystine. In this study, we document the effects of dietary supplementation with sodium selenite, sodium selenate, selenocystine, selenomethionine, and selenized yeast on the developmental rate of Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae). Larvae tolerated high levels of Se (500 µg g?1 Se) as sodium selenate and to a lesser extent as selenocystine. Lower levels of sodium selenite (>1 µg g?1 Se) caused increased mortality, reduced rates of pupation, more pupal/adult intermediates, and reduced adult emergence. Selenomethionine proved toxic to larvae at levels above 25 µg g?1 Se, significantly delaying pupation and raising mortality. Provision of Se as selenized yeast, which contains primarily selenomethionine, was also extremely detrimental to larval development and survival. The results indicate that the impact of dietary Se supplement for insects may differ from vertebrates.  相似文献   

2.
Microbial Transformations of Selenium   总被引:7,自引:6,他引:1       下载免费PDF全文
Resting cell suspensions of a strain of Corynebacterium isolated from soil formed dimethyl selenide from selenate, selenite, elemental selenium, selenomethionine, selenocystine, and methaneseleninate. Extracts of the bacterium catalyzed the production of dimethyl selenide from selenite, elemental selenium, and methaneseleninate, and methylation of the inorganic Se compounds was enhanced by S-adenosylmethionine. Neither trimethylselenonium nor methaneselenonate was metabolized by the Corynebacterium. Resting cell suspensions of a methionine-utilizing pseudomonad converted selenomethionine to dimethyl diselenide. Six of 10 microorganisms able to grow on cystine used selenocystine as a sole source of carbon and formed elemental selenium, and one of the isolates, a pseudomonad, was found also to produce selenide. Soil enrichments converted trimethylselenonium to dimethyl selenide. Bacteria capable of utilizing trimethylselenonium, dimethyl selenide, and dimethyl diselenide as carbon sources were isolated from soil.  相似文献   

3.
Abstract The uptake and incorporation of 75[Se]selenite by Butyrivibrio fibrisolvens and Bacteroides ruminicola were by constitutive systems. Rates of uptake were higher in chemostat culture than in batch culture and there may be some inducible component. Uptake of [75Se]selenite was distinct from sulphate or selenate transport, since sulphate and selenate did not inhibit selenite uptake, nor could sulphate or selenate uptake be demonstrated in these organisms. Selenite uptake in B. fibrisolvens had and apparent K m of 1.74 mM and a V max of 109 ng Se · min−1· (mg protein)−1. An apparent K m of 1.76 mM and V max of 1.5 μg Se · min−1· (mg protein)−1 was obtained for B. ruminicola . [75Se]Selenite uptake by both organisms was partially sensitive to inhibition by 2,4-DNP. Uptake by B. fibrisolvens was also partially inhibited by azide and arsenate and in B. ruminicola it was partially inhibited by fluoride. CCCP, CPZ, DCCD or quinine did not inhibit uptake in either B. fibrisolvens or B. ruminicola . Selenite transport by both organisms was sensitive to IAA and NEM and was strongly inhibited by sulphite and nitrite. [75Se]Selenite was converted to selenocystine, selenohomocystine and selenomethionine by B. fibrisolvens. B. ruminicola did not incorporate [75Se]selenite into organic compounds, but did reduce it to red elemental selenium.  相似文献   

4.
Prodrugs of L ‐selenocysteine have potential utility in cancer chemoprevention. This study reports the efficacy of three selenazolidine‐4(R)‐carboxylic acids, (2‐unsubstituted, 2‐oxo, and 2‐methyl derivatives; SCA, OSCA, and MSCA, respectively) against tobacco‐related lung tumorigenesis in a mouse model. Seven days after initiation of an AIN‐76A diet supplemented with sodium selenite (5 ppm Se), L ‐selenomethionine (3.75 ppm Se), Se‐methyl‐L ‐selenocysteine (3 ppm Se), L ‐selenocystine (15 ppm Se), SCA (15 ppm Se), OSCA (15 ppm Se), or MSCA (15 ppm Se), mice received 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanone (NNK; 10 μmol, i.p.). After an additional 16 weeks on the diets, two compounds, OSCA and selenocystine, significantly reduced lung adenoma multiplicity from 7.2 tumors per mouse in the NNK group to 4.5 and 4.6 tumors per mouse, respectively. Neither selenium concentration nor glutathione peroxidase activity in either RBCs or liver served as surrogate indicators of tumor reduction. Hepatic selenium levels were significantly elevated by all selenium‐containing compounds except Se‐methyl‐L ‐selenocysteine and SCA; RBC selenium levels by all except sodium selenite and MSCA. With the exception of L ‐selenomethionine, RBC glutathione peroxidase activity was increased along with the elevated selenium levels. Hepatic glutathione peroxidase activity was elevated by all Se‐compounds except SCA. The two compounds showing significant tumor reduction (OSCA and selenocystine) were the only two compounds that showed ubiquity of changes, elevating both selenium levels and GPx activity in both liver and RBC. © 2005 Wiley Periodicals, Inc. J Biochem Mol Toxicol 19:396‐405, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20105  相似文献   

5.
Twenty-one 6 months old female lambs were divided into 7 groups and fed a basal diet containing 0.13 mg Se/kg. The basal diet was further supplemented with 0, 0.1, 0.5 or 1.0 mg Se/kg either as sodium selenite or as selenomethionine, and was fed for 10 weeks. Both feed additives produced an increase in the selenium concentration in the tissues analysed. Significant correlations were found between the concentrations of selenomethionine or sodium selenite added to the feed and the subsequent tissue levels. However, the selenium levels seemed to plateau at approximately 0.5 mg Se/kg of supplemented sodium selenite. The total glutathione peroxidase (GSH-Px) activity of the tissues increased when the selenium supplementation increased from 0 to 0.1 mg/kg for both selenium compounds. With further increase in selenium supplementation the GSH-Px activity in the tissues plateaued except in the blood where the activity continued to rise with increasing selenomethionine supplementation. The selenium dependent GSH-Px activity in the liver rose with increasing selenomethionine supplementation, but approached a plateau when 0.1 mg Se/kg as sodium selenite was added to the feed. The selenium concentration in whole blood responded more rapidly to the selenium supplementation than did GSH-Px activity. The experiment indicates that the optimal selenium concentration in the feed is considerably higher than 0.1 mg Se/kg, and that selenium levels of 1.0 mg/kg in the feed do not result in any risk for the animals or the consumers of the products.  相似文献   

6.
C C Willhite  V H Ferm  L Zeise 《Teratology》1990,42(4):359-371
Inorganic selenium (Se) salts (selenite and selenate oxyanions) and the organic selenoamino acids (selenomethionine and seleniferous grains) are teratogenic and embryolethal in domestic and wild birds. Selenium bioaccumulation has been held responsible for reproductive failure among waterfowl at the Kesterson Reservoir (California), the Ouray and Stewart Lake Wildlife Refuges (Utah), and the Carson Sink (Nevada). Anecdotal field and controlled laboratory reports have implicated Se exposure in mammalian embryotoxicity (including human), but developmental toxicity studies in hamsters failed to demonstrate an adverse response, except at maternally toxic doses (Ferm et al., Reprod. Toxicol., in press). Uptake, distribution, and elimination of Se after a single bolus equimolar dose (60 mumol/kg) of selenate or selenomethionine by oral or intravenous administration were compared using day 8 pregnant hamsters. Intravenous selenate was eliminated ten times more rapidly from maternal plasma than oral selenate, but concentrated in liver, kidney, and placenta to the same degree. Intravenous (iv) L-selenomethionine achieved lower maximum circulating total [Se], but it was eliminated more slowly than iv selenate. Larger areas under the plasma and peripheral tissue [Se]:time curve (AUC) after oral or parenteral selenomethionine than after equimolar selenate were consistent with previous studies in rodents and in humans. Embryonic [Se] plateaued at 3 nmol/g after selenate, but embryonic [Se] after selenomethionine continued to accumulate (80 nmol/g) as gestation progressed. The lack of a teratogenic response in hamsters at doses of either selenate or selenomethionine less than those associated with maternal intoxication cannot be attributed to lack of Se accumulation in early embryonic and placental tissue.  相似文献   

7.
The effect on cell viability and growth rate of sodium selenite, selenocystine, sodium selenate, and selenomethionine at selenium concentrations of 6.25 and 12.5 uM was studied in vitro on cells of the human mammary tumor cell line HTB123/DU4475. Selenite and selenocystine affected both cell viability and growth rate of the tumor cells at these selenium concentrations. Selenite and selenocystine decreased intracellular glutathione concentrations, but did not affect tumor cell glutathione peroxidase activity. After six days of exposure to either selenate or selenomethionine, the viability of tumor cells remained stable, but cell growth, as measured by numbers of cells, was retarded. Neither selenate nor selenomethionine produced changes in concentrations of intracellular glutathione. The toxic effect of selenite on tumor cells was enhanced by addition of 0.25 mM glutathione to the growth medium. Preincubation of the tumor cells with 62.5 uM buthionine sulfoximine decreased cellular glutathione to 15% of controls at 24 h and enhanced the toxicity of selenite toward the tumor cells. Glutathione, 2-mercaptoethanol, and L-cysteine were all toxic to the tumor cells in a dose-dependent manner.  相似文献   

8.
Treatment of fathead minnows (Pimephales promelas) with either [75Se]selenate, -selenite or -l-selenomethionine by gavage at 20 ng Se/g resulted in organ uptake and early distribution patterns which differed significantly between compounds. The greatest differences in uptake between compounds was observed in liver tissue which accumulated much less [75Se]selenate than either selenite or l-selenomethionine. The 75Se burdens and relative distribution among the various organs were nearly identical during the elimination phase for [75Se]selenate and -selenite. This suggests that selenium derived from these compounds converge to a common metabolic pool. The whole body T1/2, rate of 75Se uptake and magnitude of 75Se accumulation were generally greater for [75Se]selenomethionine than the inorganic forms. Selenium-75 was present in the bile following the oral administration of each compound. The partitioning of selenate and selenite into the plasma and cellular fraction of blood differs with both the compound and time following exposure.  相似文献   

9.
Selenium (Se) is an essential trace element for humans and animals. A hydroponic experiment was performed to study the effects of sulphur (S) on Se uptake, translocation, and assimilation in wheat (Triticum aestivum L.) seedlings. Sulphur starvation had a positive effect on selenate uptake and the form of Se supplied greatly influenced Se speciation in plants. Compared with the control plants, Se uptake by the S-starved plants was enhanced by 4.81-fold in the selenate treatment, and selenate was readily transported from roots to shoots. By contrast, S starvation had no significant effect on selenite uptake, and selenite taken up by roots was rapidly converted to organic forms and tended to accumulate in roots. X-ray absorption near edge spectroscopy (XANES) analysis showed that organic forms of selenium, including selenocystine, Se-methyl-selenocysteine (MeSeCys), and selenomethionine-Se-oxide, were dominant in the plants exposed to selenite and accounted for approximately 90 % of the total Se. Whereas selenate remained as the dominant species in the roots and shoots exposed to selenate, with little selenate converted to selenite and MeSeCys. Besides, sulphur starvation increased the proportion of inorganic Se species in the selenate-supplied plants, but had no significant effects on Se speciation in plants exposed to selenite. The present study provides important knowledge to understand the associated mechanism of Se uptake and metabolism in plants.  相似文献   

10.
The uptake of selenite, selenate and selenomethionine (SeMet) was performed with brush border membrane vesicles (BBMV) prepared from rats fed selenium-deficient and supplemented diets. At equilibrium (60 min), the uptake of 75Se from [75Se]selenite ranged from 16.5 to 18.9 nmol mg-1 protein. There was a curvilinear relationship in the uptake of selenite over a concentration range of 10–1000 m. About 2 nmol mg-1 protein was obtained with selenomethionine (SeMet) which occurred between 90 and 180 s. In contrast to selenite, there was a linear relationship in the initial uptake of SeMet over a concentration range of 10–1000 m. The uptake of selenate was approximately 50-fold lower than selenite, reaching 350 pmol mg-1 protein. Dietary selenium level had no effect on the rate of 75Se accumulation by BBMV. Dramatic differences are found in the uptake and binding of selenium by BBMV incubated with different selenocompounds.  相似文献   

11.
The distribution and speciation of selenium (Se) in freshwater fish (muscle and liver tissue) from lakes in Argentina was investigated. Three introduced species, brown trout (Salmo trutta), rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis), and one native species, creole perch (Percichthys trucha), were investigated. Values for total selenium in muscle ranged from 0.66 to 1.61 μg/g, while in the liver, concentrations were much higher, from 4.46 to 73.71 μg/g on a dry matter basis. Separation of soluble Se species (SeCys2, selenomethionine (SeMet), SeMeSeCys, selenite and selenate) was achieved by ion exchange chromatography and detection was performed by inductively coupled plasma–mass spectrometry. The results showed that in fish muscle, from 47 to 55 % of selenium was soluble and the only Se species identified was SeMet, which represented around 80 % of soluble Se, while in the liver, the amount of soluble Se ranged from 61 to 76 % and the percentage of species identified (SeMet and SeCys2) was much lower and ranged from 8 to 17 % of soluble Se.  相似文献   

12.
Formula-fed infants often have lower serum selenium levels than breast-fed infants. Although no deleterious effects have been correlated to this finding, supplementation of formula with selenium is considered. In this study, we investigated the uptake and retention by suckling rat pups of 75Se from selenite, selenate, and selenomethionine added to infant formula. The molecular distribution of 75Se in liver, kidney, intestine, and plasma was followed by gel-filtration chromatography on Superose 12. 75Se-uptake was most rapid from selenomethionine (70% at 1 hr), followed by selenate (51%) and selenite (29%). This difference was explained by a higher retention of 75Se in the stomach and small intestinal wall of pups given selenite supplement. Plasma distribution of 75Se as studied by gel filtration was also different, with a higher proportion of 75Se from selenomethionine being protein-bound than from selenite or selenate. Similarly, a larger proportion of 75Se from selenomethionine became protein-bound in the liver than from selenite or selenate. In conclusion, although whole body retention after 24–48 hr was similar, the metabolic fate of selenium varies considerably with the form of selenium added to formula. Further studies are needed to study the long-term consequences of selenium accumulated in different body compartments.  相似文献   

13.
Selenite can be a dominant form of selenium (Se) in aerobic soils; however, unlike selenate, the mechanism of selenite uptake by plants remains unclear. Uptake, translocation and Se speciation in wheat (Triticum aestivum) supplied with selenate or selenite, or both, were investigated in hydroponic experiments. The kinetics of selenite influx was determined in short-term (30 min) experiments. Selenium speciation in the water-extractable fraction of roots and shoots was determined by HPLC-ICPMS. Plants absorbed similar amounts of Se within 1 d when supplied with selenite or selenate. Selenate and selenite uptake were enhanced in sulphur-starved and phosphorus-starved plants, respectively. Phosphate markedly increased K(m) of the selenite influx. Selenate and selenite uptake were both metabolically dependent. Selenite was rapidly converted to organic forms in roots, with limited translocation to shoots. Selenomethionine, selenomethionine Se-oxide, Se-methyl-selenocysteine and several other unidentified Se species were detected in the root extracts and xylem sap from selenite-treated plants. Selenate was highly mobile in xylem transport, but little was assimilated to organic forms in 1 d. The presence of selenite decreased selenate uptake and xylem transport. Selenite uptake is an active process likely mediated, at least partly, by phosphate transporters. Selenite and selenate differ greatly in the ease of assimilation and xylem transport.  相似文献   

14.
The distribution of selenium in a marine wader, the Oystercatcher (Haematopus ostralegus) is given by the levels in 15 tissues and plasma. Red blood cells (RBC) contain the highest level (23 mg/kg dry wt) followed by liver, lung, and kidney (17–19 mg/kg). Most other tissues range from 3–10 mg/kg. The average kidney and liver concentrations of the Oystercatcher belong to the concentrations characteristic in birds. However, the Oystercatcher's tissue selenium concentrations are in general four-to fivefold mammalian levels, but in liver and lung, 11- to 13-fold and in the RBC, 12- to 33-fold. The selenium plasma and RBC levels of the Oystercatcher vary during the year from 280 to 410 μg/L and 13 to 30 mg/kg dry wt, respectively; the plasma concentrations are positively correlated with the RBC selenium concentrations. An overview of literature data shows that the selenium kidney and liver concentrations of birds do not vary with geographical latitude and size (length) of the birds. In species of the ordersCharadriiformes andProcellariiformes, high selenium kidney, and to a lesser extent liver, concentrations may occur. A function of selenium in antioxidation is suggested.  相似文献   

15.
Hudman  J. F.  Glenn  A. R. 《Archives of microbiology》1984,140(2-3):252-256
Selenite uptake and incorporation in Selenomonas ruminantium was constitutive with an inducible component. It was distinct from sulphate or selenate transport, since sulphate and selenate did not inhbit uptake, nor could sulphate or selenate uptake be demonstrated. Selenite uptake had an apparent K m of 1.28 mM and a V max of 148 ng Se min-1 mg-1 protein. Uptake was sensitive to inhibition by 2,4-dinitrophenol (DNP), carbonyl cyanide m-chlorophenyl hydrazone (CCCP), azide, iodoacetic acid (IAA) and N-ethylmaleimide (NEM), but not chloropromazine (CPZ), N,N-dicyclohexyl-carbodiimide (DCCD), quinine, arsenate, or fluoride. Treatment of cells accumulating 75[Se]-Selenite with 2,4,DNP inhibited uptake, but did not cause efflux. Transport of selenite was inhibited by sulphite and nitrite, but not by nitrate, phosphate, sulphate of selenate. 75[Se]-Selenite was incorporated into selenocystine, selenoethionine, selenohomocysteine, and selenomethionine and was also reduced to red elemental selenium.  相似文献   

16.
The effects of cadmium (Cd), mercury (Hg), and three different chemical forms of selenium (Se) (selenite, selenocystine, and selenomethionine) on ram spermatozoal motility and oxygen consumption in vitro were studied over a 4-mo period. Concentrations of 10(-6) to 10(-2) M Cd and Hg were injurious to spermatozoa as indicated by depressed motility and reduced oxygen uptake. Equimolar concentrations of Se as selenite, selenocystine, or selenomethionine counteracted the toxicity of Cd and Hg at low concentrations (10(-5) and 10(-6) M) but not at higher concentrations (10(-4) to 10(-2) M). Gel filtration (Sephadex G-75) of seminal plasma and solubilized sperm prepared from semen incubated with Cd or Hg with or without the Se compounds revealed that Cd or Hg eluted with the void volume proteins in all treatments. Incubation of ram spermatozoa with any of the three chemical forms of Se ranging from 10(-6) to 2.5 X 10(-5) M significantly improved sperm motility and oxygen consumption.  相似文献   

17.
The study was conducted to investigate the effects of dietary maternal selenomethionine or sodium selenite supplementation on performance and selenium status of broiler breeders and their next generation. Two hundred and forty 39-week-old Lingnan yellow broiler breeders were allocated randomly into two treatments, each of which included three replicates of 40 birds. Pretreatment period was 2 weeks, and the experiment lasted 8 weeks. The groups were fed the same basal diet supplemented with 0.30 mg selenium/kg of sodium selenite or selenomethionine. After incubation, 180 chicks from the same parental treatment group were randomly divided into three replicates, with 60 birds per replicate. All the offspring were fed the same diet containing 0.04 mg selenium/kg, and the experiment also lasted 8 weeks. Birth rate was greater (p < 0.05) in hens fed with selenomethionine than that in hens fed with sodium selenite. The selenium concentration in serum, liver, kidney, and breast muscle of broiler breeders, selenium deposition in the yolk, and albumen and tissues' (liver, kidney, breast muscle) selenium concentrations of 1-day-old chicks were significantly (p < 0.01) increased by maternal selenomethionine supplementation compared with maternal sodium selenite supplementation. The antioxidant status of 1-day-old chicks was greatly improved by maternal selenomethionine intake in comparison with maternal sodium selenite intake and was evidenced by the increased glutathione peroxidase activity in breast muscle (p < 0.05), superoxide dismutase activity in breast muscle and kidney (p < 0.05), glutathione concentration in kidney (p < 0.01), total antioxidant capability in breast muscle and liver (p < 0.05), and decreased malondialdehyde concentration in liver and pancreas (p < 0.05) of 1-day-old chicks. Feed utilization was better (p < 0.05), and mortality was lower (p < 0.05) in the progeny from hens fed with selenomethionine throughout the 8-week growing period compared with those from hens fed with sodium selenite. In summary, we concluded that maternal selenomethionine supplementation increased birth rate and Se deposition in serum and tissues of broiler breeders as well as in egg yolk and egg albumen more than maternal sodium selenite supplementation. Furthermore, maternal selenomethionine intake was also superior to maternal sodium selenite intake in improving the tissues Se deposition and antioxidant status of 1-day-old chicks and increasing the performance of the progeny during 8 weeks of post-hatch life.  相似文献   

18.
The toxicity of selenium in fish is influenced by its chemical speciation and the exposure route. In the natural environment, selenium exposure to fish occurs primarily in the form of selenomethionine in diet. Thus, the main objective of this study was to examine the tissue-specific selenium burden and speciation in fish exposed to elevated dietary selenomethionine. Rainbow trout (Oncorhynchus mykiss) were treated with dietary selenomethionine (40 μg g(-1) dry mass) for 2 weeks, and at the end of the exposure different tissue samples were collected to assess the tissue-specific distribution and speciation of selenium. We used synchrotron-based X-ray absorption near edge spectroscopy (XANES) to determine the selenium speciation profile. Selenomethionine, selenocysteine and selenocystine were found to be the predominant form of selenium in all of the tissues; however their relative proportion varied across different tissues. In general, the organs primarily involved in selenium handling in fish (e.g., liver, kidney) accumulated a higher percentage of selenocystine. We also found that dietary selenomethionine exposure resulted into a marked increase in selenium burden of all major tissues in fish including the brain. Collectively, our findings provide new insights into the tissue-specific distribution and speciation of selenium in fish exposed to selenomethionine via diet.  相似文献   

19.
Forty-eight Norwegian bred White Leghorn chickens were divided into 6 groups and fed a basal diet containing 0.30 mig Se/kg supplemented with 0, 0.1, 0.5, 1.0, 3.0 or 6.0 mg Se/ kg in the form of selenomethionine for 18 weeks. A supplement of only 0.1 mg Se/kg induced significantly higher selenium concentrations in breast muscle and eggs, particularly in the egg white. The increase of selenium in the tissue and egg was proportional to the amounts of selenomethionine added to the feed. In the group given 6.0 mg Se/kg, the selenium concentrations in all tissues and eggs analysed ranged from 4.8 to 7.3 μg Se/g. No signs of toxic effects were observed even at the highest intake of selenium. Excess supply of selenium as selenomethionine to chickens was shown to be more potent than sodium selenite in raising the selenium concentration in tissues and eggs. A supplementation up to 10 times the requirement did not increase the levels of selenium in poultry products to such a degree that they could be considered as a potential risk for human consumption.  相似文献   

20.
The present study was undertaken to evaluate the in vitro availability of chemically varying forms of selenium (Se), supplemented in cow's milk. Two inorganic (selenite and selenate) and two organic (seleno-methionine [Se-Met] and seleno-cystine [Se-Cys]) Se sources were evaluated. The in vitro availability was estimated by the diffusibility of Se during simulated gastrointestinal digestion. First, the diffusibility was compared after adding a constant amount of Se as either selenate, selenite, seleno-methionine, or Se-Cys in milk samples. Se-Met and selenate were found to be significantly more diffusible than selenocystine and selenite under the simulated gastrointestinal conditions. The tendency for superior in vitro availability of selenate and Se-Met compared to selenite and Se-Cys was confirmed for a supplementation range of 5–40 ng/g of Se. This study suggests that the high diffusibility of selenate and Se-Met in a simulated gastrointestinal environment may contribute to their high absorption in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号