首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of biaxial deformation on pulmonary artery endothelial cells   总被引:2,自引:0,他引:2  
An apparatus has been designed to subject vascular cells grown on a compliant substrate in vitro to uniform, quantifiable levels of biaxial deformation. The system described can be controlled with respect to strain level, rate, and frequency to mimic the pulsatile force to which vascular cells are exposed in vivo under both physiologic and pathologic conditions. In the experiments presented here, bovine pulmonary artery endothelial cells were grown on a substrate of segmented polyurethane urea (Mitrathane). Cell growth and morphology on this substrate were compared with those of cells grown on standard tissue culture polystyrene with no difference noted between the two substrates. Primary cultures of pulmonary artery endothelial cells were seeded onto Mitrathane, which was then subjected to cyclic biaxial deformation-producing strains of 0.78%, 1.76%, 4.9%, or 12.5% at a frequency of 1 sec-1 and a duty cycle of 0.5 sec-1 for 7 h. Cells subjected to deformations generating strains of either 4.9% or 12.5% secreted significantly less fibronectin than nondeformed cells. Similar results were obtained in experiments using cloned pulmonary artery endothelial cells on Mitrathane subjected to the 4.9% strain; however, total protein synthesis was increased. Cell viability and DNA synthesis were not affected by cyclic biaxial deformation in these experiments.  相似文献   

2.
Alterations in lymph node architecture occur with HIV infection and contribute to immunological derangements. We previously showed that matrix fibronectin stabilized HIV and increased HIV infection of PBL. We showed increased fibronectin deposition in lymph nodes of HIV-infected patients. However, we did not detect a difference in fibronectin synthesis between uninfected and infected PBL. Therefore, we hypothesized that interactions of HIV-infected cells with fibroblasts resulted in increased fibronectin deposition. We detected increased fibronectin deposition by immunofluorescence on fibroblasts cocultured with HIV-infected PBL. We also found a 6-fold increase in fibronectin mRNA levels in fibroblasts cocultured with HIV-infected PBL by real-time PCR. Furthermore, when HIV-infected PBL were added to reporter fibroblasts stably transfected with a fibronectin promoter, we found a 1.5- to 2-fold increase in promoter activity. Since conditioned medium from HIV-infected PBL also increased fibronectin promoter activity, we hypothesized that a soluble factor such as TGFbeta was responsible for increased fibronectin secretion. Pretreatment of supernatant from HIV-infected PBL with a neutralizing Ab to TGFbeta1 abrogated the increased fibronectin promoter activity. We confirmed that HIV-infected PBL produced increased TGFbeta1 by ELISA. Using Mv1Lu reporter cells, we found a 2- to 3-fold increase in biologically active TGFbeta in supernatants of HIV-infected PBL. Finally, we determined that HIV infection did not change the percentage of active TGFbeta. Our data suggest that HIV-infected lymphocytes indirectly contribute to lymph node remodeling by secretion of TGFbeta1, which increases fibronectin synthesis by fibroblasts.  相似文献   

3.
We have previously demonstrated that a 2H exposure of cultured pulmonary endothelial cells to ozone (0.0-1.0 ppm) in-vitro resulted in a concentration-dependent reduction of endothelial prostacyclin production (90% decrease at the 1.0 ppm level). Ozone-exposed endothelial cells, incubated with 20 uM arachidonate, also demonstrated a significant inhibition of prostacyclin synthesis. To further examine the mechanisms of the inhibition of prostacyclin synthesis, bovine pulmonary endothelial cells were exposed to 1.0 ppm ozone for 2H. A significant decrease in prostacyclin synthesis was found within 5 min of exposure (77 +/- 36% of air-exposed control values, p less than 0.05). Endothelial prostacyclin synthesis returned to baseline levels by 12H after ozone exposure, a time point which was similar to the recovery time of unexposed endothelium treated with 0.5 uM acetylsalicylic acid. Incubation of endothelial cells, previously exposed to 1.0 ppm ozone for 2 hours, with 4 uM PGH2 resulted in restoration of essentially normal prostacyclin synthesis. When endothelial cells were co-incubated with catalase (5 U/ml) during ozone exposure, no inhibition of prostacyclin synthesis was observed. Co-incubation with either heat-inactivated catalase or superoxide dismutase (10 U/ml) did not affect the ozone-induced inhibition of prostacyclin synthesis. These data suggest that H2O2 is a major toxic species produced in endothelial cells during ozone exposure and responsible for the inhibition of endothelial cyclooxygenase activity.  相似文献   

4.
Confluent rabbit corneal endothelial cells incubated in the absence of serum do not produce fibrinogen. When exogenous fibronectin is added to these cultures, fibrinogen production is observed. Fibronectin concentrations stimulate fibrinogen synthesis by endothelial cells in a dose-response fashion. This direct interaction of fibronectin and fibrinogen may be important in both wound healing processes and pathological states.  相似文献   

5.
Exposure of cultured bovine pulmonary artery endothelial cells to varying levels of hypoxia (10% or 0% O2) for 4 hours resulted in a significant dose-dependent inhibition in endothelial prostacyclin synthesis (51% and 98%, at the 10% and 0% O2 levels respectively, p less than 0.05, compared to 21% O2 exposure values). Release of 3H-arachidonic acid from cellular pools was not altered by hypoxia. Some of the cells were incubated with arachidonic acid (20 microM for 5 min) or PGH2 (4 microM for 2 min) immediately after exposure. Endothelium exposed to 0% O2, but not to 10% O2, produced significantly less prostacyclin after addition of either arachidonic acid (25 +/- 5% of 21% O2 exposure values, n = 6, p less than 0.01) or PGH2 (31 +/- 3% of 21% O2 exposure values, n = 6, p less than 0.05). These results suggest that hypoxia inhibits cyclooxygenase at the 10% O2 level and both cyclooxygenase and prostacyclin synthetase enzymes at the 0% O2 exposure levels. Exposure of aortic endothelial cells resulted in a 44% inhibition of prostacyclin at the 0% exposure level. No significant alteration in prostacyclin production was found in pulmonary vascular smooth muscle cells exposed to hypoxia. These data suggest that the increased prostacyclin production reported in lungs exposed to hypoxia is not due to a direct effect of hypoxia on the main prostacyclin producing cells of the pulmonary circulation.  相似文献   

6.
We have previously demonstrated that a 2H exposure of cultured pulmonary endothelial cells to ozone (0.0–1.0 ppm) resulted in a concentration-dependent reduction of endothelial prostacyclin production (90% decrease at the 1.0 ppm level). Ozone-exposed endothelial cells, incubated with 20 uM arachidonate, also demonstrated a significant inhibition of prostacyclin synthesis. To further examine the mechanisms of the inhibition of prostacyclin synthesis, bovine pulmonary endothelial cells were exposedto 1.0 ppm ozone for 2H. A significant decease in protacyclin synthesis was found within 5 min of exposure (77 ± 36% of air-exposed control values, p < 0.05). Endothelial prostacyclin synthesis returned to baseline levels by 12H after ozone exposure, a time point which was similar to the recovery time of unexposed endothelium treated with 0.5 uM acetylsalicylic acid. Incubation of endothelial cells, previously exposed to 1.0 ppm ozone for 2 hours, with 4 uM PGH2 resulted in restoration of essentially normal prostacyclin synthesis. When endothelial cells were co-incubated with catalase (5U/ml) during ozone exposure, no inhibition of prostacycline synthesis was observed. Co-incubation with either heat-inactivated catalase or superoxide dismutase (10U/ml) did not affect the ozone-induced inhibition of prostacycline synthesis. These data suggest that H2O2 is a major toxic species produced in endothelial cells during ozone exposure and responsible for the inhibiton of endothelial cyclooxygenase activity.  相似文献   

7.
We previously demonstrated an immune-inflammatory response associated with increased expression of interleukin (IL)-β and fibronectin in graft coronary arteriopathy in piglets following heterotopic heart transplant. Further studies showed that increased endogenously produced IL-β was upregulating fibronectin production by donor coronary artery (CA) smooth muscle cells (SMC). Since co-induction of IL-β and tumor necrosis factor (TNF)-α has been shown in other systems, we investigated the possible interaction between these cytokines in regulating fibronectin production in CA SMC. First, we documented increased TNF-α expression in vivo in donor compared to host CA. Next, synthesis of fibronectin was measured in host and donor CA SMC following [35S]-methionine radiolabeling and gelatin-sepharose extraction. As previously shown with IL-β, increased donor CA SMC fibronectin synthesis was reduced to host levels in the presence of TNF-α antibodies, and exogenous TNF-α upregulated fibronectin synthesis in host CA SMC to levels in donor cells. In normal CA SMC, TNF-α-stimulated fibronectin production was downregulated to or below control levels in the presence of IL-β antibodies. Likewise, IL-β-stimulated fibronectin synthesis was downregulated to control levels when TNF-α neutralizing antibodies were added. Combining TNF-α and IL-β enhanced fibronectin production over that observed with either cytokine alone, but was not additive. Thus, our studies suggest that vascular SMC fibronectin synthesis is regulated by reciprocal induction of IL-β and TNF-α activity and provide the first demonstration of a ‘cytokine loop’ modulating matrix production. © 1995 Wiley-Liss, Inc.  相似文献   

8.
9.
10.
Microfibril-associated glycoprotein (MAGP)-1 and MAGP-2 are small structurally related glycoproteins that are specifically associated with fibrillin-containing microfibrils. MAGP-2, unlike MAGP-1, contains an RGD motif with potential for integrin binding. To determine if the RGD sequence is active, a series of cell binding assays was performed. MAGP-2 was shown to promote the attachment and spreading of bovine nuchal ligament fibroblasts when coated onto plastic wells in molar quantities similar to those of fibronectin. In contrast, approximately 10-fold more MAGP-1 was required to support comparable levels of cell adhesion. The fibroblast binding to MAGP-2 was completely inhibited if the peptide GRGDSP or the MAGP-2-specific peptide GVSGQRGDDVTTVTSET was added to the reaction medium at a 10 microM final concentration. The control peptide GRGESP had no effect on the interaction. These findings indicate that the cell interaction with MAGP-2 is an RGD-mediated event. A monoclonal antibody to human alphaVbeta3 integrin (LM609) almost completely blocked cell attachment to MAGP-2 when added to the medium at 0.5 microgram/ml, whereas two monoclonal antibodies specific for the human beta1 integrin subunit, 4B4 (blocking) and QE2.E5 (activating), had no effect even at 10 microgram/ml. Fetal bovine aortic smooth muscle cells, ear cartilage chondrocytes, and arterial endothelial cells and human skin fibroblasts and osteoblasts were also observed to adhere strongly to MAGP-2. In addition, each cell type was able to spread on MAGP-2 substrate, with the exception of the endothelial cells, which remained spherical after 2 h of incubation. The binding of each cell type was blocked when the anti-alphaVbeta3 integrin antibody was included in the assay, indicating that alphaVbeta3 integrin is the major receptor for MAGP-2 on several cell types. Thus, MAGP-2 may mediate interactions between fibrillin-containing microfibrils and cell surfaces during the development of a variety of tissues.  相似文献   

11.
Alterations in polyamine metabolism may be a critical mechanism of monocrotaline (MCT)-induced structural remodeling of the pulmonary vasculature. In the present study, the hypothesis that MCT, through the induction of oxidative stress, modulates cellular polyamine regulatory mechanisms which in turn might be involved in the upregulation of fibronectin production in pulmonary artery endothelial cells (PAEC) was examined. A 24-h treatment with MCT significantly increased PAEC polyamine concentrations as compared to vehicle-treated cells. In addition, exposure to MCT caused an increase in abundance of ornithine decarboxylase (ODC) mRNA, upregulation of ODC activity and enhancement of spermidine import into PAEC. Inhibition ofde novopolyamine synthesis further increased spermidine uptake in MCT-treated cells. The depletion of cellular polyamine contents through the blockade of bothde novopolyamine biosynthesis and polyamine transport prevented MCT-induced increases in the medium level of fibronectin. In addition, PAEC treatment with MCT stimulated cellular oxidative stress as determined by increased levels of thiobarbituric acid reactive substances, enhanced dichlorofluorescein fluorescence and activation of NF-KB. A co-treatment with dimethylthiourea, an oxygen radical scavenger, prevented MCT-induced increases in cellular oxidation and attenuated disturbances in polyamine metabolism. These data suggest that MCT can stimulate polyamine regulatory processes in PAEC possibly through an increase in cellular oxidative stress. The present study may have significant implication in understanding mechanisms of MCT-induced pulmonary hypertension and remodeling of pulmonary vasculature.  相似文献   

12.
Exposure of cultured bovine pulmonary artery endothelial cells to varying levels of hypoxia (10% or 0% O2) for 4 hours resulted in a significant dose-dependent inhibition in endothelial prostacyclin synthesis (51% and 98%, at the 10% and 0% O2 levels respectively, p <0.05, compared to 21% O2 exposure values). Release of 3H-arachidonic acid from cellular pools was not altered by hypoxia. Some of the cells were incubated with arachidonic acid (20 μM for 5 min) or PGH2 (4 μM for 2 min) immediately after exposure. Endothelium exposed to 0% O2, but not to 10% O2, produced significantly less prostacyclin after addition of either arachidonic acid (25 ± 5% of 21% O2 exposure values, n=6, p <0.01) or PGH2 (31 ± 3% of 21% O2 exposure values, n=6, p <0.05). These results suggest that hypoxia inhibits cyclooxygenase at the 10% O2 level and both cyclooxygenase and prostacyclin synthetase enzymes at the 0% O2 exposure levels. Exposure of aortic endothelial cells resulted in a 44% inhibition of prostacyclin at the 0% exposure level. No significant alteration in prostacyclin production was found in pulmonary vascular smooth muscle cells exposed to hypoxia. These data suggest that the increased prostacyclin production reported in lungs exposed to hypoxia is not due to a direct effect of hypoxia on the main prostacyclin producing cells of the pulmonary circulation.  相似文献   

13.
应用蛋白dotblot技术检测了低氧内皮细胞条件培养液(HECCM)和常氧内皮细胞条件培养液(NECCM)内PDGF相对含量,并利用[3H]-TdR掺入法和流式细胞术观察了HECCM和NECCM及加入特异PDGF抗体对肺动脉平滑肌细胞(PASMC)生长的影响。结果表明,HECCM中的PDGF含量明显高于NECCM;HECCM能明显增强PASMC内DNA合成,促进PASMC从Go/G1期进入S期;当预先加入PDGF-B链抗体时,则会明显地抑制HECCM对PASMC的DNA合成,阻止PASMC从Go/G1期进入S期。结果提示,低氧时PASMC增殖与肺动脉内皮细胞分泌释放PDGF增加有关  相似文献   

14.
Several in vitro studies have previously demonstrated that the addition of TGF-β to aortic smooth muscle cells or skin fibroblasts stimulates elastin synthesis. It is not clear however whether, in vivo, TGF-β participates in the regulation of elastin synthesis, especially in physiological conditions. The aim of our study was to explore the localization of elastin mRNA and TGF-β1 in the rat thoracic aorta (an elastic artery) and caudal artery (a muscular artery). Elastin mRNA was localized by in situ hybridization and quantified using Northern blot analysis. TGF-β1 was detected using immunohistochemistry. The study was carried out as a function of age (rats of 3, 10, 20, and 30 months). We observed that TGF-β1 immunoreactivity is present predominantly, but not exclusively, at the sites of elastin synthesis as determined by elastin mRNA detection: in smooth muscle cells in the aorta and in endothelial cells in the caudal artery. The ability of exogenously added TGF-β1 (0.001–10 ng/ml) to modulate the steady-state levels of elastin mRNA in primary cultures of endothelial cells, smooth muscle cells, and fibroblasts isolated from the thoracic aorta was also studied. At the highest concentration used, elastin mRNA levels increased 5-fold in endothelial cells and 11-fold in smooth muscle cells. The demonstration that TGF-β1 immunoreactivity is present at the sites of elastin synthesis in the thoracic aorta and in the caudal artery and the observation that TGF-β1 induces an increase in elastin mRNA levels in cultured endothelial cells and smooth muscle cells suggest that TGF-β1 may be implicated, at least in part, in the physiological regulation of elastin gene expression.  相似文献   

15.
Collagen, fibronectin, and nonfibrous protein biosynthesis were examined in cultures of rabbit arterial smooth muscle cells grown on tissue culture plastic precoated either with rabbit plasma fibronectin or bovine serum albumin. Cells seeded into fibronectin-coated wells appeared to reach confluence more quickly than counterparts grown on albumin-coated surfaces. Measurement 3H-thymidine incorporation into DNA by these cultures suggested that this was probably a consequence of more rapid and efficient cell attachment rather than an increased rate of proliferation of smooth muscle cells grown on fibronectin. In preconfluent cultures, the rates of collagen and fibronectin biosynthesis were reduced to 34 and 57%, respectively, on a per-cell basis in cultures grown on fibronectin-coated surfaces compared with cells grown on albumin-coated plasticware. In preconfluent cultures grown on fibronectin-coated surfaces, a greater percentage of the total fibronectin synthesized was incorporated into the cell layer. The distribution of newly synthesized collagen between culture medium and cell layer, however, was not affected by alteration of substratum composition. There was no difference in the rate of synthesis of noncollagen proteins between the two groups of preconfluent cells. In postconfluent cultures the rates of collagen and fibronectin biosynthesis were equivalent in both albumin- and fibronectin-treated cultureware. In preconfluent cultures, analyses of procollagens showed that the overall amounts of both types I and III procollagens were reduced in fibronectin-treated wells, indicating the reduction in collagen synthesis to be general and not type-specific. Although type V procollagen biosynthesis was not detected in either preconfluent group, it was found in postconfluent cultures. The reduction of fibronectin synthesis in cells grown in fibronectin-coated wells was significant as early as 4 hours after plating. Together, these findings suggest that cultured arterial smooth muscle cells are capable of deriving information from their substratum and regulating the biosynthetic rates of extracellular matrix components in response to the immediate needs of the cell.  相似文献   

16.
Levels of angiotensin converting enzyme (ACE) in cultured bovine pulmonary artery endothelial cells treated with dexamethasone, aldosterone, 3,3',5'-triiodo-L-thyronine, Ca2+ ionophore, 3-isobutyl-1-methylxanthine, dibutyryl cAMP and forskolin were quantitated by an enzyme linked immunosorbent assay (ELISA). The configuration for the ELISA consisted of purified bovine lung ACE adsorbed to a solid phase competing with endothelial cellular ACE for a limited amount of anti-ACE immunoglobulin. ACE-IgG complex on the solid phase was detected by goat anti-rabbit IgG-alkaline phosphatase conjugate with enzymatic activity measured by p-nitrophenylphosphate as substrate. This ELISA detected ACE with a sensitivity of 32 ng/ml cellular ACE. Elevation in cellular ACE catalytic activity as measured by fluorescent assay of detergent extracts from bovine endothelial cells corresponded well with an increase in ACE protein as determined by the ELISA. These results provide direct evidence that increases in catalytic activity of ACE produced in endothelial cells by a variety of agents result from enhancement of the synthesis of ACE protein.  相似文献   

17.
Summary We studied the interaction of human polymorphonuclear leukocytes (PMNs) with umbilical vein endothelial cells infected with herpes simplex virus (HSV) type 1. PMNs labeled with51Cr were added to endothelial monolayers at varying times after infection and their adherence assessed 1 h later. Granulocyte adherence (GA) to uninfected cells averaged 26.5±1.9%. Increased adherence began 6 h postinfection and rose to a maximum at 20 to 24 h. HSV-1 glycoproteins seemed to mediate the increase in GA: tunicamycin treatment of infected monolayers for 18 h abolished the increased GA as did incubation of infected cells with F(ab')2 fragments prepared from human antiserum containing HSV-1 antibody. Supported by grants R01-AA-06029 and T32-AA07233 from the National Institute of Alcohol Abuse and Alcoholism, and R01-HL-28220 from the National Heart, Lung, and Blood Institute.  相似文献   

18.
An important determinant of disease following Streptococcus pneumoniae (pneumococcus) lung infection is pulmonary inflammation mediated by polymorphonuclear leukocytes (PMNs). We found that upon intratracheal challenge of mice, recruitment of PMNs into the lungs within the first 3 hours coincided with decreased pulmonary pneumococci, whereas large numbers of pulmonary PMNs beyond 12 hours correlated with a greater bacterial burden. Indeed, mice that survived infection largely resolved inflammation by 72 hours, and PMN depletion at peak infiltration, i.e. 18 hours post-infection, lowered bacterial numbers and enhanced survival. We investigated host signaling pathways that influence both pneumococcus clearance and pulmonary inflammation. Pharmacologic inhibition and/or genetic ablation of enzymes that generate extracellular adenosine (EAD) (e.g. the ectoenzyme CD73) or degrade EAD (e.g. adenosine deaminase) revealed that EAD dramatically increases murine resistance to S. pneumoniae lung infection. Moreover, adenosine diminished PMN movement across endothelial monolayers in vitro, and although inhibition or deficiency of CD73 had no discernible impact on PMN recruitment within the first 6 hours after intratracheal inoculation of mice, these measures enhanced PMN numbers in the pulmonary interstitium after 18 hours of infection, culminating in dramatically elevated numbers of pulmonary PMNs at three days post-infection. When assessed at this time point, CD73 -/- mice displayed increased levels of cellular factors that promote leukocyte migration, such as CXCL2 chemokine in the murine lung, as well as CXCR2 and β-2 integrin on the surface of pulmonary PMNs. The enhanced pneumococcal susceptibility of CD73 -/- mice was significantly reversed by PMN depletion following infection, suggesting that EAD-mediated resistance is largely mediated by its effects on PMNs. Finally, CD73-inhibition diminished the ability of PMNs to kill pneumococci in vitro, suggesting that EAD alters both the recruitment and bacteriocidal function of PMNs. The EAD-pathway may provide a therapeutic target for regulating potentially harmful inflammatory host responses during Gram-positive bacterial pneumonia.  相似文献   

19.
The effects of gamma irradiation (150-3000 rad) on prostacyclin synthesis (PGI2) and Na+-dependent amino acid uptake (alpha-aminoisobutyric acid, AIB) were assessed in vitro in bovine pulmonary artery endothelial cells grown in plastic culture dishes. A dose-dependent increase in both PGI2 synthesis and AIB was found 24 h after irradiation at exposure levels greater than 600 rad. The increase in PGI2 synthesis [297% of sham-irradiated values at 3000 rad, P less than 0.01] was due to an increase in release of arachidonic acid from plasma membrane stores as well as stimulation of cyclooxygenase and/or prostacyclin synthetase enzymes. The increase in AIB uptake (75% increase at 3000 rad compared to sham-exposure values) correlated with the increased synthesis of PGI2 (r = 0.94). There was also a dose-dependent increase in the number of cells that became detached from the culture dishes during the 24-h period after irradiation. The changes in PGI2 synthesis and AIB uptake induced by gamma irradiation differed if the endothelial cells were grown on cover slips, indicating that the endothelial response to irradiation may be dependent on the interaction between the endothelial cell and its extracellular basement membrane matrix.  相似文献   

20.
Studies to eludicate the effect of heparin on the synthesis of extracellular matrix components by cultured human umbilical vein endothelial cells (EC) were conducted. Using pulse-labeling and ELISA techniques, we found that EC grown in the presence of heparin (90 micrograms/ml) and endothelial cell growth factor (ECGF) synthesized 50% less fibronectin (FN) than did ECGF-treated control cultures. No change in the synthesis of thrombospondin (TSP) was induced by heparin. The effect of heparin on EC FN synthesis was independent of whether the cells were cultivated on plastic or gelatin substrates. However, ECGF modulates the effect of heparin on EC synthesis of FN. RNA slot-blot analysis demonstrated that heparin treatment specifically decreased the steady-state mRNA levels for both FN and TSP in the cells. Steady-state levels of mRNA for two intracellular proteins, actin and tubulin, were unchanged. These data suggest that heparin decreases EC expression of FN at least in part by decreasing the amount of FN mRNA available for translation. The failure of heparin to inhibit TSP expression, although it reduces TSP mRNA levels, points to the possibility that the rate of EC synthesis of TSP is translationally or post-translationally regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号