首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenanthroline and bipyridine, strong chelators of iron, protect DNA from single-strand break formation by H2O2 in human fibroblasts. This fact strongly supports the concept that these DNA single-strand breaks are produced by hydroxyl radicals generated by a Fenton-like reaction between intracellular Fe2+ and H2O2: H2O2 + Fe2+----Fe3+ + OH- + OH: Corroborating this idea is the fact that thiourea, an effective OH radical scavenger, prevents the formation of DNA single-strand breaks by H2O2 in nuclei from human fibroblasts. The copper chelator diethyldithiocarbamate, a strong inhibitor of superoxide dismutase, greatly enhances the in vivo production of DNA single-strand breaks by H2O in fibroblasts. This supports the idea that Fe3+ is reduced to Fe2+ by superoxide ion: O divided by 2 + Fe3+----O2 + Fe2+; and therefore that the sum of this reaction and the Fenton reaction, namely the so-called Haber-Weiss reaction, H2O2 + O divided by 2----O2 + OH- + OH; represents the mode whereby OH radical is produced from H2O2 in the cell. EDTA completely protects DNA from single-strand break formation in nuclei. The chelator therefore removes iron from the chromatin, and although the Fe-EDTA complex formed is capable of reacting with H2O2, the OH radical generated under these conditions is not close enough to hit DNA. Therefore iron complexed to chromatin functions as catalyst for the Haber-Weiss reaction in vivo, similarly to the role played by Fe-chelates in vitro.  相似文献   

2.
To help settle controversy as to whether the chelating agent diethylenetriaminepentaacetate (DTPA) supports or prevents hydroxyl radical production by superoxide/hydrogen peroxide systems, we have reinvestigated the question by spectroscopic, kinetic, and thermodynamic analyses. Potassium superoxide in DMSO was found to reduce Fe(III)DTPA. The rate constant for autoxidation of Fe(II)DTPA was found (by electron paramagnetic resonance spectroscopy) to be 3.10 M-1 s-1, which leads to a predicted rate constant for reduction of Fe(III)DTPA by superoxide of 5.9 x 10(3) M-1 s-1 in aqueous solution. This reduction is a necessary requirement for catalytic production of hydroxyl radicals via the Fenton reaction and is confirmed by spin-trapping experiments using DMPO. In the presence of Fe(III)DTPA, the xanthine/xanthine oxidase system generates hydroxyl radicals. The reaction is inhibited by both superoxide dismutase and catalase (indicating that both superoxide and hydrogen peroxide are required for generation of HO.). The generation of hydroxyl radicals (rather than oxidation side-products of DMPO and DMPO adducts) is attested to by the trapping of alpha-hydroxethyl radicals in the presence of 9% ethanol. Generation of HO. upon reaction of H2O2 with Fe(II)DTPA (the Fenton reaction) can be inhibited by catalase, but not superoxide dismutase. The data strongly indicate that iron-DTPA can catalyze the Haber-Weiss reaction.  相似文献   

3.
Using ESR spin-trapping techniques with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), we confirmed the 1:1 stoichiometry for the formation of hydroxyl radicals with Fe2+ in the Fenton reaction under experimental conditions wherein [H2O2] is 90 microM and [Fe2+] is very low, 1 microM or less. The stoichiometry decreased markedly as the Fe2+ concentration was increased. The efficiency of hydroxyl radical generation varied with the nature of the iron chelators used and increased in the order of phosphate alone approximately ADP less than EDTA less than diethylenetriaminepentaacetic acid (DETAPAC). The second order rate constant for the Fenton reaction was measured to be 2.0 x 10(4) M-1 s-1 for phosphate alone, 8.2 x 10(3) M-1 s-1 for ADP, 1.4 x 10(4) M-1 s-1 for EDTA, and 4.1 x 10(2) M-1 s-1 for DETAPAC. Measuring the radicals formed as spins trapped in the presence of ethanol, we estimated the amount of total oxidizing intermediates formed in the Fenton reaction, which we concluded consists of hydroxyl radicals and an iron species. The oxidizing species of iron which might be assigned as ferryl, FeO2+, or Fe(IV) = O was generated effectively in the presence of ADP even at low Fe2+ concentrations. In general, as the Fe2+ concentration was increased, the ferryl species predominated over the hydroxyl radical except for the case of Fe(II)-DETAPAC, which generated only hydroxyl radicals as the oxidizing species. Three possible pathways are proposed for the Fenton reaction, the dominant ones depending very much on the nature of the iron chelator being used.  相似文献   

4.
The generation of oxygen reduction products by Neisseria gonorrhoeae FA1090 upon exposure to streptonigrin (SNG) and paraquat (PQ2+) and their toxicity was examined. N. gonorrhoeae exhibited maximal cyanide-insensitive respiration, which was employed as an indicator of superoxide (O2-) formation, in the presence of 0.064 mM streptonigrin and 90 mM PQ2+, respectively. Using the concentrations of SNG and PQ2+ described above, complete lethality (greater than 10(8) cells/ml) was observed among cells exposed to SNG, whereas PQ2+ reduced viability by only 3 logs. In an attempt to determine the oxygen radical species generated by gonococci when exposed to SNG, dimethyl sulfoxide, Fe3+, KCN, and the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), we were able to detect .OH manifested as the methyl adduct (DMPO-CH3). The production of the latter species was not inhibited by catalase, suggesting intracellular .OH generation. When PQ2+ was substituted for SNG, only low levels of DMPO-CH3 were observed, the production of which ceased within 8 min. SNG and PQ2+, added to a O2(-)- generating system in the presence of Fe3+, promoted increased .OH generation. The iron chelator diethyl-enetriaminepentaacetic acid enhanced the generation of spin-trapped .OH and O2- in the presence of PQ2+. The addition of catalase to this system, however, eliminated the DMPO-CH3 signal, showing that the .OH in this system was extracellular. PQ2+-mediated generation of extracellular .OH in the presence of Fe3+-diethylenetriaminepentaacetic acid EDTA did not enhance the killing of gonococci by PQ2+. These data show that the lethality of SNG relative to PQ2+ is due to the inherent ability of SNG to catalyze the formation of critical levels of intracellular .OH, detectable through the use of spin trapping techniques.  相似文献   

5.
O2- was produced by gamma irradiation of formate solutions, by the action of xanthine oxidase on hypoxanthine and O2, and by the action of ferredoxin reductase on NADPH and paraquat in the presence of O2. Its reaction with H2O2 and various iron chelates was studied. Oxidation of deoxyribose to thiobarbituric acid-reactive products that was appropriately inhibited by OH. scavengers, or formate oxidation to CO2, was used to detect OH(.). With each source of O2-, and by these criteria, Fe(EDTA) efficiently catalyzed this (Haber-Weiss) reaction, but little catalysis was detectable with iron bound to DTPA, citrate, ADP, ATP, or pyrophosphate, or without chelator in phosphate buffer. O2- produced from xanthine oxidase, but not from the other sources, underwent another iron-dependent reaction with H2O2, to produce an oxidant that did not behave as free OH(.). It was formed in phosphate or bicarbonate buffer, and caused deoxyribose oxidation that was readily inhibited by mannitol or Tris, but not by benzoate, formate, or dimethyl sulfoxide. It did not oxidize formate to CO2. Addition of EDTA changed the pattern of inhibition to that expected for a reaction of OH(.). The other chelators all inhibited deoxyribose oxidation, provided their concentrations were high enough. The results are compatible with iron bound to xanthine oxidase catalyzing production of a strong oxidant (which is not free OH.) from H2O2 and O2- produced by the enzyme.  相似文献   

6.
In the radiolysis of aqueous formate-containing solutions a chain reaction (i, ii) proceeds in the presence of N2O. CO2-. + N2O + H2O----CO2 + N2 + .OH + OH- (i) .OH + HCO2-.----CO2-. + H2O (ii) The chain length depends on the dose rate and the N2O concentration but not on the formate concentration. Typically, G(CO2) approximately 140 molecules (100 eV)-1 is found, with an equivalent amount of N2, at a dose rate of 3 X 10(-3) Gy s-1. The rate constant for the rate-determining step in this chain reaction has been calculated at k(i) = 1600 dm3 mol-1 s-1. The possible relevance of this chain reaction in radiation biological studies is briefly discussed.  相似文献   

7.
When Chinese hamster fibroblasts were exposed to hydrogen peroxide or to a system consisting of xanthine oxidase and hypoxanthine, which generates superoxide anion plus hydrogen peroxide, sister-chromatid exchanges (SCEs) were formed in a dose-dependent manner. When the iron-complexing agent o-phenanthroline was present in the medium, however, the production of these SCEs was completely inhibited. This fact indicates that the Fenton reaction: Fe2+ + H2O2----OH0 + OH- + Fe3+ is responsible for the production of SCEs. When O2- and H2O2 were generated inside the cell by incubation with menadione, the production of SCE was prevented by co-incubation with copper diisopropylsalicylate, a superoxide dismutase mimetic agent. The most likely role of O2- is as a reducing agent of Fe3+: O2- + Fe3+----Fe2+ + O2, so that the sum of this and the Fenton reaction, i.e., the iron-catalyzed Haber-Weiss reaction, provides an explanation for the active oxygen species-induced SCE: H2O2 + O2(-)----OH- + OH0 + O2. According to this view, the OH radical thus produced is the agent which ultimately causes SCE. These results are discussed in comparison with other mechanisms previously proposed for induction of SCE by active oxygen species.  相似文献   

8.
The reactions of Fe3+-EDTA and Fe2+-EDTA with O2- and CO2- were investigated in the pH range 3.8--11.8. Around neutral pH O2- reduces Fe3+-EDTA with a rate constant which is pH dependent kpH 5.8--8.1 = 2 - 10(6)--5 - 10(5) M-1 - s-1. At higher pH values this reaction becomes much slower. The CO2- radical reduces Fe3+-EDTA with kpH 3.8--1- = 5 +/- 1 - 10(7) M-1 - s-1 independent of pH. At pH 9--11.8, Fe2+-EDTA forms a complex with O2- with kFe2+-EDTA + O2 = 2 - 10(6)--4 - 10(6) M-1 - s-1 which is pH dependent. We measured the spectrum of Fe2+-EDTA-O2- and calculated epsilon 290 over max = 6400 +/- 800 M-1 - cm-1 in air-saturated solutions. In O2-saturated solutions another species is formed with a rate constant of 7 +/- 2 s-1. This intermediate absorbs around 300 nm but we were not able to identify it.  相似文献   

9.
This study includes two parts. First, the Fe2+ autooxidation and chelation processes in the presence of the chelators ethylenediaminetetraacetic acid (EDTA) and diethylenetriamine pentaacetic acid (DTPA) were studied by measuring UV light absorbance alterations. Competition for Fe3+ between chelators and water or phosphate buffer (PB) ions was confirmed. The addition of EDTA or DTPA to Fe3+ in water or PB only slowly turned the water/PB-Fe3+ complexes to EDTA-Fe3+ or DTPA-Fe3+ complexes. In the second part of this study, the initiation mechanisms of Tween 20 emulsified linoleic acid peroxidation under stimulation by chelator-Fe-O2 complexes were studied by measuring changes in UV light absorbance following diene conjugation. Fe3+ in the presence of EDTA or DTPA did not stimulate diene conjugation. Fe2+ (0.10 mM) and EDTA (0.11 mM) stimulated diene conjugation of the linoleic acid emulsion, but only after apparent Fe2+ autooxidation. Fe2+ and DTPA, as well as premixed DTPA-Fe2+ complex, resulted in very fast diene conjugation in a wide range of concentrations. A nonlinear, mainly square root relation between Fe2+ concentration and peroxidation rate was noted. Superoxide dismutase (SOD), catalase, and mannitol did not prevent the lipid peroxidation. H2O2 substantially decreased the DTPA-Fe2+ stimulated, otherwise rapid, diene conjugation but slightly enhanced the slower one stimulated by EDTA-Fe2+. Without ambient oxygen, Fenton reagents did not result in .H abstraction-related diene conjugation. The findings suggest that .OH resulting from Fenton reagents may not be the main cause for the initiation of peroxidation in this model system. Furthermore, a study with different combinations of Fe2+ and Fe3+ did not support the Fe2+/Fe3+ (1:1) optimum ratio hypothesis. We therefore conclude that perferryl ions or chelator-Fe-O2 complexes may be responsible for the first-chain initiation of lipid peroxidation, at least in this model system.  相似文献   

10.
The reactions of Fe(II)EDTA, Fe(II)DTPA, and Fe(II)HEDTA with hydrogen peroxide near neutral pH have been investigated. All these reactions have been assumed to proceed through an active intermediate, I1, (Formula: see text) where pac is one of the three polyaminocarboxylates mentioned above. I1, whether .OH radical or an iron complex, reacts with ethanol, formate, and other scavengers at rates relative to k2 that, with the exception of t-butanol and benzoate, are similar, but not identical, to those expected for the.OH radical. In contrast, at pH 3, in the absence of ligands the reaction of I1 with Fe2+ was inhibited by ethanol and t-butanol and the reactivity of I1 towards these two scavengers relative to ferrous ion is identical to that exhibited by the hydroxyl radical. When pac = HEDTA, the intermediate of the first reaction reacts with formate ion to form the ferrous HEDTA ligand radical complex, which is characterized by absorption maxima at 295 nm (epsilon = 2,640 M-1 cm-1) and 420 nm (epsilon = 620 M-1 cm-1). For the reaction of Fe(II)HEDTA with H2O2, the following mechanism is proposed: (Formula: see text) where k17 = 4.2 X 10(4) M-1 sec-1 and k19 = 5 +/- 0.2 sec-1.  相似文献   

11.
To understand the role of the superoxide (O-2) radical in chromate-related genotoxicity, we investigated whether Cr(VI) can catalyze the Haber-Weiss cycle in vitro: O-2 + Cr(VI)----Cr(V) + O2 Cr(V) + H2O2----Cr(VI) + .OH + OH-. ESR and spin trapping techniques were utilized to monitor the O-2 (produced using xanthine/xanthine oxidase), .OH, and Cr(V) species. Superoxide dismutase as well as catalase inhibited the .OH radical radical formation, attesting to the direct involvement of O-2 and H2O2 in the process. ESR measurements also provided direct evidence for the formation of Cr(V). Kinetic measurements were consistent with the role of Cr(V) and H2O2 as intermediates in .OH formation. These results indicate that in cellular media, especially during chromate phagocytosis, the O-2 radical can become a significant source of .OH radicals and hence a significant factor in the biochemical mechanism of cellular damage due to Cr(VI) exposure.  相似文献   

12.
Intense lipid peroxidation of brain synaptosomes initiated with Fenton's reagent (H2O2 + Fe2+) began instantly upon addition of Fe2+ and preceded detectable OH. formation. Although mannitol or Tris partially blocked peroxidation, concentrations required were 10(3)-fold in excess of OH. actually formed, and inhibition by Tris was pH dependent. Lipid peroxidation also was initiated by either Fe2+ or Fe3+ alone, although significant lag phases (minutes) and slowed reaction rates were observed. Lag phases were dramatically reduced or nearly eliminated, and reaction rates were increased by a combination of Fe3+ and Fe2+. In this instance, lipid peroxidation initiated by optimal concentrations of H2O2 and Fe2+ could be mimicked or even surpassed by providing optimal ratios of Fe3+ to Fe2+. Peroxidation observed with Fe3+ alone was dependent upon trace amounts of contaminating Fe2+ in Fe3+ preparations. Optimal ratios of Fe3+:Fe2+ for the rapid initiation of lipid peroxidation were on order of 1:1 to 7:1. No OH. formation could be detected with this system. Although low concentrations of H2O2 or ascorbate increased lipid peroxidation by Fe2+ or Fe3+, respectively, high concentrations of H2O2 or ascorbate (in excess of iron) inhibited lipid peroxidation due to oxidative or reductive maintenance of iron exclusively in Fe2+ or Fe3+ form. Stimulation of lipid peroxidation by low concentrations of H2O2 or ascorbate was due to the oxidative or reductive creation of Fe3+:Fe2+ ratios. The data suggest that the absolute ratio of Fe3+ to Fe2+ was the primary determining factor for the initiation of lipid peroxidation reactions.  相似文献   

13.
The oxidation of Fe2+ was investigated by electron spin resonance spin trapping techniques with N-t-butyl-alpha-phenylnitrone (PBN) and dimethyl sulfoxide. Under pure oxygen, the spin adduct PBN/.OCH3 was rapidly generated by the addition of Fe2+ (0.2-1.2 mM) into phosphate buffer containing ethylenediaminetetraacetate (EDTA), dimethyl sulfoxide, and PBN at pH 7.4, but it decayed. The decay process of PBN/.OCH3 consists of two components. The fast decay was dependent on Fe2+ concentration. Another was due to destruction of the spin adduct by superoxide anion (.O2-), because superoxide dismutase (SOD) markedly prevented the decay. Catalase decreased the yield of PBN/.OCH3. When EDTA was replaced by diethylenetriaminepentaacetic acid (DTPA), both the generation and decay process of PBN/.OCH3 were slow. SOD and catalase effects were similar to those in EDTA. Fe2+ produced PBN/.OCH3 even in the absence of chelators. We could estimate the kinetic parameters by computer simulation, comparing the Fe2+ oxidation in EDTA with that in DTPA. These results demonstrate that Fe2+ reacts with O2 to generate .O2- and then H2O2, which produces .CH3 by reaction with Fe2+ and dimethyl sulfoxide.(.)OCH3 results from the reaction between .CH3 and O2. The adduct PBN/.OCH3 decays by reaction with Fe2+ and .O2-.  相似文献   

14.
The chain reactions HO* + H2O2 --> H2O + O2*- + H+ and O2*- + H+ + H2O2 --> O2 + HO* + H2O, commonly known as the Haber-Weiss cycle, were first mentioned by Haber and Willst?tter in 1931. George showed in 1947 that the second reaction is insignificant in comparison to the fast dismutation of superoxide, and this finding appears to have been accepted by Weiss in 1949. In 1970, the Haber-Weiss reaction was revived by Beauchamp and Fridovich to explain the toxicity of superoxide. During the 1970s various groups determined that the rate constant for this reaction is of the order of 1 M(-1) s(-1) or less, which confirmed George's conclusion. The reaction of superoxide with hydrogen peroxide was dropped from the scheme of oxygen toxicity, and superoxide became the source of hydrogen peroxide, which yields hydroxyl radicals via the Fenton reaction, Fe2+ + H2O2 --> Fe3+ + HO- + HO*. In 1994, Kahn and Kasha resurrected the Haber-Weiss reaction again, but this time the oxygen was believed to be in the singlet (1delta(g)) state. As toxicity arises not from a Fenton-catalysed Haber-Weiss reaction, but from the Fenton reaction, the Haber-Weiss reaction should not be mentioned anymore.  相似文献   

15.
The action of xanthine oxidase upon acetaldehyde or xanthine at pH 10.2 has been shown to be accompanied by substantial accumulation of O2- during the first few minutes of the reaction. H2O2 decreases this accumulation of O2- presumably because of the Haber-Weiss reaction (H2O2+O2- leads to OH- +OH+O2) and very small amounts of superoxide dismutase eliminate it. This accumulation of O2- was demonstrated in terms of a burst of reduction of cytochrome c, seen when the latter compound was added after aerobic preincubation of xanthine oxidase with its substrate. The kinetic peculiarities of the luminescence seen in the presence of luminol, which previously led to the proposal of H2O4-, can now be satisfactorily explained entirely on the basis of known radical intermediates.  相似文献   

16.
Peroxidases catalyze the dehydrogenation by hydrogen peroxide (H2O2) of various phenolic and endiolic substrates in a peroxidatic reaction cycle. In addition, these enzymes exhibit an oxidase activity mediating the reduction of O2 to superoxide (O2.-) and H2O2 by substrates such as NADH or dihydroxyfumarate. Here we show that horseradish peroxidase can also catalyze a third type of reaction that results in the production of hydroxyl radicals (.OH) from H2O2 in the presence of O2.-. We provide evidence that to mediate this reaction, the ferric form of horseradish peroxidase must be converted by O2.- into the perferryl form (Compound III), in which the haem iron can assume the ferrous state. It is concluded that the ferric/perferryl peroxidase couple constitutes an effective biochemical catalyst for the production of .OH from O2.- and H2O2 (iron-catalyzed Haber-Weiss reaction). This reaction can be measured either by the hydroxylation of benzoate or the degradation of deoxyribose. O2.- and H2O2 can be produced by the oxidase reaction of horseradish peroxidase in the presence of NADH. The .OH-producing activity of horseradish peroxidase can be inhibited by inactivators of haem iron or by various O2.- and .OH scavengers. On an equimolar Fe basis, horseradish peroxidase is 1-2 orders of magnitude more active than Fe-EDTA, an inorganic catalyst of the Haber-Weiss reaction. Particularly high .OH-producing activity was found in the alkaline horseradish peroxidase isoforms and in a ligninase-type fungal peroxidase, whereas lactoperoxidase and soybean peroxidase were less active, and myeloperoxidase was inactive. Operating in the .OH-producing mode, peroxidases may be responsible for numerous destructive and toxic effects of activated oxygen reported previously.  相似文献   

17.
Superoxide dismutase and Fe3+EDTA catalyzed the nitration by peroxynitrite (ONOO-) of a wide range of phenolics including tyrosine in proteins. Nitration was not mediated by a free radical mechanism because hydroxyl radical scavengers did not reduce either superoxide dismutase or Fe3+EDTA-catalyzed nitration and nitrogen dioxide was not a significant product from either catalyst. Rather, metal ions appear to catalyze the heterolytic cleavage of peroxynitrite to form a nitronium-like species (NO2+). The calculated energy for separating peroxynitrous acid into hydroxide ion and nitronium ion is 13 kcal.mol-1 at pH 7.0. Fe3+EDTA catalyzed nitration with an activation energy of 12 kcal.mol-1 at a rate of 5700 M-1.s-1 at 37 degrees C and pH 7.5. The reaction rate of peroxynitrite with bovine Cu,Zn superoxide dismutase was 10(5) M-1.s-1 at low superoxide dismutase concentrations, but the rate of nitration became independent of superoxide dismutase concentration above 10 microM with only 9% of added peroxynitrite yielding nitrophenol. We propose that peroxynitrite anion is more stable in the cis conformation, whereas only a higher energy species in the trans conformation can fit in the active site of Cu,Zn superoxide dismutase. At high superoxide dismutase concentrations, phenolic nitration may be limited by the rate of isomerization from the cis to trans conformations of peroxynitrite as well as by competing pathways for peroxynitrite decomposition. In contrast, Fe3+EDTA appears to react directly with the cis anion, resulting in greater nitration yields.  相似文献   

18.
Deferriferrioxamine B (H3DFB) is a linear trihydroxamic acid siderophore with molecular formula NH2(CH2)5[N(OH)C(O)(CH2)2C(O)NH(CH2)5]2N(OH)C(O)CH3 that forms a kinetically and thermodynamically stable complex with iron(III), ferrioxamine B. Under the conditions of our study (pH = 4.30, 25 degrees C), ferrioxamine B, Fe(HDFB)+, is hexacoordinated and the terminal amine group is protonated. Addition of simple hydroxamic acids, R1C(O)N(OH)R2 (R1 = CH3, R2 = H; R1 = C6H5, R2 = H; R1 = R2 = CH3), to an aqueous solution of ferrioxamine B at pH = 4.30, 25.0 degrees C, I = 2.0, results in the formation of ternary complexes Fe(H2DFB)A+ and Fe(H3DFB)A2+, and tris complexes FeA3, where A- represents the bidendate hydroxamate anion R1C(O)N(O)R2-. The addition of a molar excess of ethylenediaminetetraacetic acid (EDTA) to an aqueous solution of ferrioxamine B at pH 4.30 results in a slow exchange of iron(III) to eventually completely form Fe(EDTA)- and H4DFB+. The addition of a hydroxamic acid, HA, catalyzes the rate of this iron exchange reaction: (formula; see text) A four parallel path mechanism is proposed for reaction (1) in which catalysis occurs via transient formation of the ternary and tris complexes Fe(H2DFB) A+, Fe(H3DFB)A2+, and FeA3. Rate and equilibrium constants for the various reaction paths to products were obtained and the influence of hydroxamic acid structure on catalytic efficiency is discussed. The importance of a low energy pathway for iron dissociation from a siderophore complex in influencing microbial iron bio-availability is discussed. The system represented by reaction (1) is proposed as a possible model for in vivo catalyzed release of iron from its siderophore complex at the cell wall or interior, where EDTA represents the intracellular storage depot or membrane-bound carrier and HA represents a low molecular weight hydroxamate-based metabolite capable of catalyzing interligand iron exchange.  相似文献   

19.
The reaction between hydroxylamine (NH2OH) and human hemoglobin (Hb) at pH 6-8 and the reaction between NH2OH and methemoglobin (Hb+) chiefly at pH 7 were studied under anaerobic conditions at 25 degrees C. In presence of cyanide, which was used to trap Hb+, Hb was oxidized by NH2OH to methemoglobin cyanide with production of about 0.5 mol NH+4/mol of heme oxidized at pH 7. The conversion of Hb to Hb+ was first order in [Hb] (or nearly so) but the pseudo-first-order rate constant was not strictly proportional to [NH2OH]. Thus, the apparent second-order rate constant at pH 7 decreased from about 30 M-1 X s-1 to a limiting value of 11.3 M-1 X s-1 with increasing [NH2OH]. The rate of Hb oxidation was not much affected by cyanide, whereas there was no reaction between NH2OH and carbonmonoxyhemoglobin (HbCO). The pseudo-first-order rate constant for Hb oxidation at 500 microM NH2OH increased from about 0.008 s-1 at pH 6 to 0.02 s-1 at pH 8. The oxidation of Hb by NH2OH terminated prematurely at 75-90% completion at pH 7 and at 30-35% completion at pH 8. Data on the premature termination of reaction fit the titration curve for a group with pK = 7.5-7.7. NH2OH was decomposed by Hb+ to N2, NH+4, and a small amount of N2O in what appears to be a dismutation reaction. Nitrite and hydrazine were not detected, and N2 and NH+4 were produced in nearly equimolar amounts. The dismutation reaction was first order in [Hb+] and [NH2OH] only at low concentrations of reactants and was cleanly inhibited by cyanide. The spectrum of Hb+ remained unchanged during the reaction, except for the gradual formation of some choleglobin-like (green) pigment, whereas in the presence of CO, HbCO was formed. Kinetics are consistent with the view advanced previously by J. S. Colter and J. H. Quastel [1950) Arch. Biochem. 27, 368-389) that the decomposition of NH2OH proceeds by a mechanism involving a Hb/Hb+ cycle (reactions [1] and [2]) in which Hb is oxidized to Hb+ by NH2OH.  相似文献   

20.
The intrinsic reactivity of delta 2- and delta 3-deacetoxy-7-phenylacetamidocephalosporanates, penicillanate, unsubstituted, 2-methyl- and 2-phenyl-penems and other beta-lactam antibiotics has been expressed in terms of the second-order rate constant (M-1.s-1(OH-)) for the hydrolysis of the beta-lactam amide bond by OH- at 37 degrees C. The values thus obtained have been compared with the second-order rate constants (M-1.s-1(enzyme) for the opening of the same beta-lactam amide bond during interaction with the beta-lactamases of Streptomyces albus G and Actinomadura R39 and the D-alanyl-D-alanine-cleaving serine peptidases of Streptomyces R61 and Actinomadura R39. Depending on the cases, the accelerating effect due to enzyme action and expressed by the ratio M-1.s-1(enzyme)/M-1.s-1(OH) varies from less than 2 to more than 1 x 10(6). The primary parameter that governs enzyme action is the goodness of fit of the beta-lactam molecule to the enzyme cavity rather than its intrinsic reactivity. With the D-alanyl-D-alanine-cleaving serine peptidases, the three penems studied form intermediate complexes characterized by very short half lives of 14-100 s, values significantly lower than those exhibited by most beta-lactam compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号