首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Centromere-dependent binding of yeast minichromosomes to microtubules in vitro   总被引:15,自引:0,他引:15  
J Kingsbury  D Koshland 《Cell》1991,66(3):483-495
We present an in vitro assay for yeast centromere function; isolated yeast minichromosomes require a functional centromere to bind to bovine microtubules and sediment with them. Centromere-bovine microtubule complexes form at physiological microtubule concentrations. Two of the three centromere DNA elements, which are necessary for centromere function in vivo, are also necessary for centromeres to bind microtubules in vitro. However, purified centromere DNA alone does not bind to microtubules. These results suggest that microtubule binding must be mediated by the two centromere DNA elements and factors that associate with one or both of them. The percent of centromeres with microtubule-binding activity is 7- to 10-fold higher in lysates made from nocodazole-arrested G2-M cells than from alpha factor G1 cells, suggesting that this centromere activity is regulated during the cell cycle. The potential of this assay for dissecting centromere assembly, function, and regulation is discussed.  相似文献   

2.
The most striking region of structural differentiation of a eukaryotic chromosome is the kinetochore. This chromosomal domain plays an integral role in the stability and propagation of genetic material to the progeny cells during cell division. The DNA component of this structure, which we refer to as the centromere, has been localized to a small region of 220–250 base pairs within the chromosomes from the yeast Saccharomyces cerevisiae. The centromere DNA (CEN) is organized in a unique structure in the cell nucleus and is required for chromosome stability during both mitotic and meiotic cell cycles. The centromeres from one chromosome can stabilize small circular minichromosomes or other yeast chromosomes. The centromeres may therefore interact with the same components of the segregation apparatus regardless of the chromosome in which they reside. The CEN DNA does not encode any regulatory RNAs or proteins, but rather is a cis-acting element that provides genetic stability to adjacent DNA sequences.  相似文献   

3.
Summary Large (10.5–13.5 kbp) circular minichromosomes containing the centromere of chromosome 11 (CEN11) and the MET14 gene of Saccharomyces cerevisiae in the YRp7 vector are considerably more stable during mitosis than smaller ones containing only the 1.6 kbp CEN11 SalI-fragment. Yeast transformants obtained with a tandem dimeric and thus dicentric form derived from this DNA varied in the mitotic stability of the TRP1 marker of the vector. The largest group of transformants contained minichromosomes which carried deletions located quite specifically at one of the two centromeres in the dimer, eliminating its function in mitosis. This group included also some minichromosomes which had been modified by intramolecular tandem amplification of the subunit carrying the deletion without losing the centromere within the unmodified subunit. The second major group carried minichromosomes which had been monomerized. Monomerized minichromosomes showed the relative low degree of mitotic stability typical for the original minichromosomes containing the 1.6 kbp CEN11 SalI-fragment. Increasing numbers of additional subunits carrying the TRP1-ARS1 sequences but lacking additional centromeres improved the mitotic stability considerably.  相似文献   

4.
F Azorin  A Rich 《Cell》1985,41(2):365-374
Proteins dissociated from SV40 minichromosomes by increasing NaCl concentration were tested for their binding to Z-DNA [Br-poly(dG-dC)] and B-DNA [poly (dG-dC)]. Z-DNA binding proteins are largely released in 0.2 M NaCl whereas most B-DNA binding proteins are not released until 0.6 M NaCl. Incubation of SV40 minichromosomes with Z-DNA-Sephadex in low salt solution results in proteins with Z-DNA binding activity (PZ proteins). These proteins bind to negatively supercoiled DNAs containing left-handed Z-DNA but not to relaxed DNAs. They compete with anti-Z-DNA antibodies in binding to negatively supercoiled DNAs. The binding is tighter to negatively supercoiled SV40 DNA than to other plasmids, suggesting sequence-specific Z-DNA binding. PZ proteins binding to negatively supercoiled SV40 DNA interfere with cleavage at the Sph I sites, within the 72 bp repeat sequences of the viral control region, but not with cleavage at the Bgl I site, at the origin of replication. Removal of PZ proteins also exposes the Sph I sites in the SV40 minichromosomes while addition of PZ proteins makes the sites inaccessible.  相似文献   

5.
Toxic effects of excess cloned centromeres.   总被引:24,自引:7,他引:17       下载免费PDF全文
Plasmids carrying a Saccharomyces cerevisiae centromere have a copy number of one or two, whereas other yeast plasmids have high copy numbers. The number of CEN plasmids per yeast cell was made artificially high by transforming cells simultaneously with several different CEN plasmids carrying different, independently selectable markers. Some host cells carried five different CEN plasmids and an average total of 13 extra copies of CEN3. Several effects were noted. The copy number of each plasmid was unexpectedly high. The plasmids were mutually unstable. Cultures contained many dead cells. The viable host cells grew more slowly than control cells, even in nonselective medium. There was a pause in the cell cycle at or just before mitosis. We conclude that an excess of centromeres is toxic and that the copy number of centromere plasmids is low partly because of selection against cells carrying multiple centromere plasmids. The toxicity may be caused by competition between the centromeres for some factor present in limiting quantities, e.g., centromere-binding proteins, microtubules, or space on the spindle pole body.  相似文献   

6.
Saccharomyces cerevisiae centromeres contain a conserved region ranging from 111 to 119 base pairs (bp) in length, which is characterized by the three conserved DNA elements CDEI, CDEII, and CDEIII. We isolated a 125-bp CEN6 DNA fragment (named ML CEN6) containing only these conserved elements and assayed it completely separated from its chromosomal context on circular minichromosomes and on a large linear chromosome fragment. The results show that this 125-bp CEN6 DNA fragment is by itself sufficient for complete mitotic and meiotic centromere functions.  相似文献   

7.
CEP3 encodes a centromere protein of Saccharomyces cerevisiae   总被引:6,自引:0,他引:6       下载免费PDF全文
We have designed a screen to identify mutants specifically affecting kinetochore function in the yeast Saccharomyces cerevisiae. The selection procedure was based on the generation of "synthetic acentric" minichromosomes. "Synthetic acentric" minichromosomes contain a centromere locus, but lack centromere activity due to combination of mutations in centromere DNA and in a chromosomal gene (CEP) encoding a putative centromere protein. Ten conditional lethal cep mutants were isolated, seven were found to be alleles of NDC10 (CEP2) encoding the 110-kD protein of yeast kinetochore. Three mutants defined a novel essential gene CEP3. The CEP3 product (Cep3p) is a 71-kD protein with a potential DNA-binding domain (binuclear Zn-cluster). At nonpermissive temperature the cep3 cells arrest with an undivided nucleus and a short mitotic spindle. At permissive temperature the cep3 cells are unable to support segregation of minichromosomes with mutations in the central part of element III of yeast centromere DNA. These minichromosomes, when isolated from cep3 cultures, fail to bind bovine microtubules in vitro. The sum of genetic, cytological and biochemical data lead us to suggest that the Cep3 protein is a DNA-binding component of yeast centromere. Molecular mass and sequence comparison confirm that Cep3p is the p64 component of centromere DNA binding complex Cbf3 (Lechner, 1994).  相似文献   

8.
Replication forks pause at yeast centromeres.   总被引:5,自引:0,他引:5       下载免费PDF全文
The 120 bp of yeast centromeric DNA is tightly complexed with protein to form a nuclease-resistant core structure 200 to 240 bp in size. We have used two-dimensional agarose gel electrophoresis to analyze the replication of the chromosomal copies of yeast CEN1, CEN3, and CEN4 and determine the fate of replication forks that encounter the protein-DNA complex at the centromere. We have shown that replication fork pause sites are coincident with each of these centromeres and therefore probably with all yeast centromeres. We have analyzed the replication of plasmids containing mutant derivatives of CEN3 to determine whether the replication fork pause site is a result of an unusual structure adopted by centromere DNA or a result of the protein-DNA complex formed at the centromere. The mutant centromere derivatives varied in function as well as the ability to form the nuclease-resistant core structure. The data obtained from analysis of these derivatives indicate that the ability to cause replication forks to pause correlates with the ability to form the nuclease-resistant core structure and not with the presence or absence of a particular DNA sequence. Our findings further suggest that the centromere protein-DNA complex is present during S phase when replication forks encounter the centromere and therefore may be present throughout the cell cycle.  相似文献   

9.
Using the gel shift assay system, we have measured the apparent affinity constant for the interaction of two different DNAs with MAP proteins found in both total calf brain microtubules and heat stable brain preparations. Both DNAs studied contained centromere/kinetochore sequences- one was enriched in the calf satellite DNA; the other was a large restriction fragment containing the yeast CEN11 DNA sequence. Complexes formed using both DNAs had similar Kapp values in the range of 2.1 x 10(7) M-1 to 2.0 x 10(8) M-1. CEN11 DNA-MTP complexes had by far the highest Kapp value of 2.0 x 10(8) M-1. The CEN11 DNA sequence is where the yeast kinetochore of chromosome 11 is formed and where the single yeast microtubule is bound in vivo. The CEN11 conserved region II known binding sites-(dA/dT)n runs- for mammalian MAP2 protein, are in good agreement with this higher Kapp value. The effects of the classical tubulin binding drugs colchicine, podophyllotoxin and vinblastine on the DNA-MAP protein complex stability were investigated by determining the drug concentrations where the complexes were destabilized. Only the complexes formed from total microtubule protein (tubulin containing) were destabilized over a wide drug concentration range. Heat stable brain protein complexes (no tubulin) were largely unaffected. Furthermore, it took 10-100 fold higher drug concentrations to disrupt the CEN11 DNA complexes compared to the calf thymus satellite DNA enriched complexes. These data support our previous results suggesting that there is a DNA sequence dependent interaction with MAP proteins that appears to be conserved in evolution (Marx et. al., Biochim. Biophys. Acta. 783, 383-392, 1984; Marx and Denial, Molecular Basis of Cancer 172B, 65-75 1985). In addition, these results imply that the classical tubulin binding drugs may exert their biological effects in cells at least in part by disrupting DNA-Protein complexes of the type we have studied here.  相似文献   

10.
CENP-E (centromere protein E) and CENP-F (centromere protein F), also known as mitosin, are large, multi-functional proteins associated with the outer kinetochore. CENP-E features a well-characterized kinesin motor domain at its N-terminus and a second microtubule-binding domain at its C-terminus of unknown function. CENP-F is important for the formation of proper kinetochore–microtubule attachment and, similar to CENP-E, contains two microtubule-binding domains at its termini. While the importance of these proteins is known, the details of their interactions with microtubules have not yet been investigated. We have biochemically and structurally characterized the microtubule-binding properties of the amino- and carboxyl-terminal domains of CENP-F as well as the carboxyl-terminal (non-kinesin) domain of CENP-E. CENP-E's C-terminus and CENP-F's N-terminus bind microtubules with similar affinity to the well-characterized Ndc80 complex, while CENP-F's C-terminus shows much lower affinity. Electron microscopy analysis reveals that all of these domains engage the microtubule surface in a disordered manner, suggesting that these factors have no favored binding geometry and may allow for initial side-on attachments early in mitosis.  相似文献   

11.
Centromeres on chromosomes in the yeast Saccharomyces cerevisiae contain approximately 140 base pairs (bp) of DNA. The functional centromere (CEN) region contains three important sequence elements (I, PuTCACPuTG; II, 78 to 86 bp of high-AT DNA; and III, a conserved 25-bp sequence with internal bilateral symmetry). Various point mutations or deletions in the element III region have a profound effect on CEN function in vivo, indicating that this DNA region is a key protein-binding site. This has been confirmed by the use of two in vitro assays to detect binding of yeast proteins to DNA fragments containing wild-type or mutationally altered CEN3 sequences. An exonuclease III protection assay was used to demonstrate specific binding of proteins to the element III region of CEN3. In addition, a gel DNA fragment mobility shift assay was used to characterize the binding reaction parameters. Sequence element III mutations that inactivate CEN function in vivo also prevent binding of proteins in the in vitro assays. The mobility shift assay indicates that double-stranded DNAs containing sequence element III efficiently bind proteins in the absence of sequence elements I and II, although the latter sequences are essential for optimal CEN function in vivo.  相似文献   

12.
A functional centromere located on a small DNA restriction fragment from Saccharomyces cerevisiae was identified as CEN14 by integrating centromere-adjacent DNA plus the URA3 gene by homologous recombination into the yeast genome and then by localizing the URA3 gene to chromosome XIV by standard tetrad analysis. DNA sequence analysis revealed that CEN14 possesses sequences (elements I, II, and III) that are characteristic of other yeast centromeres. Mitotic and meiotic analyses indicated that the CEN14 function resides on a 259-base-pair (bp) RsaI-EcoRV restriction fragment, containing sequences that extend only 27 bp to the right of the element I to III region. In conjunction with previous findings on CEN3 and CEN11, these results indicate that the specific DNA sequences required in cis for yeast centromere function are contained within a region about 150 bp in length.  相似文献   

13.
CP1 is a yeast protein which binds to the highly conserved DNA element I (CDEI) of yeast centromeres. We have purified CP1 to near homogeneity; it is comprised of a single polypeptide of molecular weight 58,400. When bound to yeast CEN3 DNA, CP1 protects a 12-15-base pair region centered over CDEI. Methylation interference experiments show that methylations of residues located outside of the 8-base pair CDEI sequence have no detectable effect on CP1 binding, suggesting that the DNA sequences important for CP1 recognition are confined to the CDEI octanucleotide. The equilibrium constant for CP1 binding to CEN3 DNA is relatively low, 3 x 10(8) M-1. Using a novel method to determine relative DNA binding constants, we analyzed the effect of CDEI mutations on CP1 binding. A C to T point mutation at position 5 (CO1) reduces the equilibrium constant about 35-fold, while the insertion of an additional T at this position (CAT) reduces the equilibrium constant 1,400-fold. The effect of these mutations on mitotic centromere function in vivo was assessed using a plasmid stability assay. While the CO1 mutation had a slight effect, the CAT mutation significantly impaired function, implying that CP1 binding is required for the optimal mitotic function of yeast centromeres.  相似文献   

14.
We have cloned segments of yeast DNA containing the centromere XI-linked MET14 gene. This was done by selecting directly in Saccharomyces cerevisiae for complementation of a met14 mutation after transformation with a hybrid plasmid DNA genomic library. Genetic evidence indicates that functional centromere DNA (CEN11) from chromosome XI is also contained on the segment of S. cerevisiae DNA cloned in pYe(MET14)2. This plasmid is maintained stably in budding S. cerevisiae cultures and segregates predominantly 2+:20- through meiosis. The CEN11 element has been subcloned in vector YRp7' on an S. cerevisiae DNA fragment 900 base pairs in length [pYe(CEN11)10]. The mitotic and meiotic behavior of plasmids containing CEN11 plus a DNA replicator (ars) indicates that the centromere DNA sequences enable these plasmids to function as true minichromosomes in S. cerevisiae.  相似文献   

15.
Recent studies have begun to yield some insight into the structural and regulatory components of centromeres, and new assays have been developed that promise to be of use in advancing our understanding of centromere structure and function. In the budding yeast Saccharomyces cerevisiae new proteins that are required for centromere function have been identified and an in vitro microtubule-binding assay that should assist in dissecting the process of centromere microtubule attachment has been developed. The centromere-specific DNA sequences in the fission yeast Schizosaccharomyces pombe have been identified and partially characterized. In addition, several mammalian centromere proteins have been further characterized, and localization and inhibition studies suggest roles for these proteins in the regulation and assembly of a functional kinetochore.  相似文献   

16.
《The Journal of cell biology》1994,127(4):995-1008
Kinetochores are structures that assemble on centromeric DNA and mediate the attachment of chromosomes to the microtubules of the mitotic spindle. The protein components of kinetochores are poorly understood, but the simplicity of the S. cerevisiae kinetochore makes it an attractive candidate for molecular dissection. Mutations in genes encoding CBF1 and CBF3, proteins that bind to yeast centromeres, interfere with chromosome segregation in vivo. To determine the roles played by these factors and by various regions of centromeric DNA in kinetochore function, we have developed a method to partially reassemble kinetochores on exogenous centromeric templates in vitro and to visualize the attachment of these reassembled kinetochore complexes to microtubules. In this assay, single reassembled complexes appear to mediate microtubule binding. We find that CBF3 is absolutely essential for this attachment but, contrary to previous reports (Hyman, A. A., K. Middleton, M. Centola, T.J. Mitchison, and J. Carbon. 1992. Microtubule- motor activity of a yeast centromere-binding protein complex. Nature (Lond.). 359:533-536) is not sufficient. Additional cellular factors interact with CBF3 to form active microtubule-binding complexes. This is mediated primarily by the CDEIII region of centromeric DNA but CDEII plays an essential modulatory role. Thus, the attachment of kinetochores to microtubules appears to involve a hierarchy of interactions by factors that assemble on a core complex consisting of DNA-bound CBF3.  相似文献   

17.
Two functionally important DNA sequence elements in centromeres of the fission yeast Schizosaccharomyces pombe are the centromeric central core and the K-type repeat. Both of these DNA elements show internal functional redundancy that is not correlated with a conserved DNA sequence. Specific, but degenerate, sequences in these elements are bound in vitro by the S. pombe DNA-binding proteins Abp1p (also called Cbp1p) and Cbhp, which are related to the mammalian centromere DNA-binding protein CENP-B. In this study, we determined that Abp1p binds to at least one of its target sequences within S. pombe centromere II central core (cc2) DNA with an affinity (K(s) = 7 x 10(9) M(-1)) higher than those of other known centromere DNA-binding proteins for their cognate targets. In vivo, epitope-tagged Cbhp associated with centromeric K repeat chromatin, as well as with noncentromeric regions. Like abp1(+)/cbp1(+), we found that cbh(+) is not essential in fission yeast, but a strain carrying deletions of both genes (Deltaabp1 Deltacbh) is extremely compromised in growth rate and morphology and missegregates chromosomes at very high frequency. The synergism between the two null mutations suggests that these proteins perform redundant functions in S. pombe chromosome segregation. In vitro assays with cell extracts with these proteins depleted allowed the specific assignments of several binding sites for them within cc2 and the K-type repeat. Redundancy observed at the centromere DNA level appears to be reflected at the protein level, as no single member of the CENP-B-related protein family is essential for proper chromosome segregation in fission yeast. The relevance of these findings to mammalian centromeres is discussed.  相似文献   

18.
Kinetochores are large multiprotein complexes that connect centromeres to spindle microtubules in all eukaryotes. Among the biochemically distinct kinetochore complexes, the conserved four-protein Mtw1 complex is a central part of the kinetochore in all organisms. Here we present the biochemical reconstitution and characterization of the budding yeast Mtw1 complex. Direct visualization by electron microscopy revealed an elongated bilobed structure with a 25-nm-long axis. The complex can be assembled from two stable heterodimers consisting of Mtw1p-Nnf1p and Dsn1p-Nsl1p, and it interacts directly with the microtubule-binding Ndc80 kinetochore complex via the centromere-proximal Spc24/Spc25 head domain. In addition, we have reconstituted a partial Ctf19 complex and show that it directly associates with the Mtw1 complex in vitro. Ndc80 and Ctf19 complexes do not compete for binding to the Mtw1 complex, suggesting that Mtw1 can bridge the microtubule-binding components of the kinetochore to the inner centromere.  相似文献   

19.
Human centromere protein C (CENP-C) is an essential component of the inner kinetochore plate. A central region of CENP-C can bind DNA in vitro and is sufficient for targeting the protein to centromeres in vivo, raising the possibility that this domain mediates centromere localization via direct DNA binding. We performed a detailed molecular dissection of this domain to understand the mechanism by which CENP-C assembles at centromeres. By a combination of PCR mutagenesis and transient expression of GFP-tagged proteins in HeLa cells, we identified mutations that disrupt centromere localization of CENP-C in vivo. These cluster in a 12 amino acid region adjacent to the core domain required for in vitro DNA binding. This region is conserved between human and mouse, but is divergent or absent in invertebrate and plant CENP-C homologues. We suggest that these 12 amino acids are essential to confer specificity to DNA binding by CENP-C in vivo, or to mediate interaction with another as yet unidentified centromere component. A differential yeast two-hybrid screen failed to identify interactions specific to this sequence, but nonetheless identified 14 candidate proteins that interact with the central region of CENP-C. This collection of mutations and interacting proteins comprise a useful resource for further elucidating centromere assembly.  相似文献   

20.
In vivo genomic footprint of a yeast centromere.   总被引:9,自引:4,他引:5       下载免费PDF全文
We have used in vivo genomic footprinting to investigate the protein-DNA interactions within the conserved DNA elements (CDEI, CDEII, and CDEIII) in the centromere from chromosome III of the yeast Saccharomyces cerevisiae. The in vivo footprint pattern obtained from wild-type cells shows that some guanines within the centromere DNA are protected from methylation by dimethyl sulfate. These results are consistent with studies demonstrating that yeast cells contain sequence-specific centromere DNA-binding proteins. Our in vivo experiments on chromosomes with mutant centromeres show that some mutations which affect chromosome segregation also alter the footprint pattern caused by proteins bound to the centromere DNA. The results of this study provide the first fine-structure map of proteins bound to centromere DNA in living yeast cells and suggest a direct correlation between these protein-DNA interactions and centromere function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号