首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
To understand how changes in gene regulatory networks lead to novel morphologies, we have analysed the evolution of a key target gene, RAD, controlling floral asymmetry. In Antirrhinum, flower asymmetry depends on activation of RAD in dorsal regions of the floral meristem by the upstream regulators CYC and DICH. We show that Arabidopsis, a species with radially symmetric flowers, contains six RAD-like genes, reflecting at least three duplications since the divergence of Antirrhinum and Arabidopsis. Unlike the situation in Antirrhinum, none of the Arabidopsis RAD-like genes are activated in dorsal regions of the flower meristem. Rather, the RAD-like genes are expressed in distinctive domains along radial or ab-adaxial axes, consistent with a range of developmental roles. Introduction of a RAD genomic clone from Antirrhinum into Arabidopsis leads to a novel expression pattern that is distinct from the expression pattern of RAD in Antirrhinum and from the endogenous RAD-like genes of Arabidopsis. Nevertheless, RAD is able to influence developmental targets in Arabidopsis, as ectopic expression of RAD has developmental effects in this species. Taken together, our results suggest that duplication and divergence of RAD-like genes has involved a range of cis- and trans-regulatory changes. It is possible that such changes led to the coupling of RAD to CYC regulation in the Antirrhinum lineage and hence the co-option of RAD had a role in the generation of flower dorsoventral asymmetry.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
A Hudson  R Carpenter  S Doyle    E S Coen 《The EMBO journal》1993,12(10):3711-3719
Olive (oli) is a recessive nuclear mutation of Antirrhinum majus which reduces the level of chlorophyll pigmentation and affects the ultrastructure of chloroplasts. The oli-605 allele carries a Tam3 transposon insertion which has allowed the locus to be isolated. The oli gene encodes a large putative protein of 153 kDa which shows homology to the products of two bacterial genes necessary for tetrapyrrole-metal chelation during the synthesis of bacteriochlorophyll or cobyrinic acid. We therefore propose that the product of the oli gene is necessary for a key step of chlorophyll synthesis: the chelation of magnesium by protoporphyrin IX. Somatic reversion of the oli-605 allele produces chimeric plants which indicate that the oli gene functions cell-autonomously. Expression of oli is restricted to photosynthetic cells and repressed by light, suggesting that it may be involved in regulating the rate of chlorophyll synthesis in green tissues.  相似文献   

13.
14.
The R2R3-MYB transcription factor gene family in maize   总被引:2,自引:0,他引:2  
Du H  Feng BR  Yang SS  Huang YB  Tang YX 《PloS one》2012,7(6):e37463
  相似文献   

15.
Summary The pal-rec gene of Antirrhinum majus suppresses anthocyanin except in those cell lines where pal-rec has mutated to Pal, so that anthocyanin-coloured flecks appear on whitish petals. Antirrhinum majus families of very high and very low anthocyanin content (Dark and Pale) were obtained and crossed with two pal-rec pal-rec lines, one with consistently high and the other consistently low mutability. Mutable offspring from Dark parents tended to show higher mutability than those from Pale parents in crosses with either mutable line, providing evidence for an association between intense pigmentation and high mutability. Such an association is discussed in the context of relationship between precursor availability for conversion by a gene product and initiation of activity of that gene.  相似文献   

16.
The Purple leaf (Pl) locus of rice (Oryza sativa L.) affects regulation of anthocyanin biosynthesis in various plant tissues. The tissue-specific patterns of anthocyanin pigmentation, together with the syntenic relationship, indicate that the rice Pl locus may play a role in the anthocyanin pathway similar to the maize R/B loci. We isolated two cDNAs showing significant identity to the basic helix-loop-helix (bHLH) proteins found in the maize R gene family. OSB1 appeared to be allelic to the previously isolated R homologue, Ra1, but showed a striking difference at the C-terminus because of a 2-bp deletion. Characterization of the corresponding genomic region revealed that the sequence identical to a 5'-portion of OSB2 existed approximately 10-kb downstream of the OSB1 coding region. OSB2 lacks a conserved C-terminal domain. Restriction fragment length polymorphism analyses using an F(2) population indicate that both genes co-segregate with the purple leaf phenotype. A transient complementation assay showed that the anthocyanin pathway is inducible by OSB1 or OSB2. These results suggest that the Pl(w) allele may be complex and composed of at least two genes encoding bHLH proteins.  相似文献   

17.
18.
The maize p1 gene encodes a Myb-homologous regulator of red pigment biosynthesis. To investigate the tissue-specific regulation of the p1 gene, maize plants were transformed with constructs combining promoter and cDNA sequences of two alleles which differ in pigmentation patterns: P1-wr (white pericarp/red cob) and P1-rr (red pericarp/red cob). Surprisingly, all promoter/cDNA combinations produced transgenic plants with red pericarp and red cob (RR pattern), indicating that the P1-wr promoter and encoded protein can function in pericarp. Some of the RR patterned transgenic plants produced progeny plants with white pericarp and red cob (WR pattern), and this switch in tissue-specificity correlated with increased transgene methylation. A similar inverse correlation between pericarp pigmentation and DNA methylation was observed for certain natural p1 alleles, which have a gene structure characteristic of standard P1-wr alleles, but which confer red pericarp pigmentation and are consistently less methylated than standard P1-wr alleles. Although we cannot rule out the possible existence of tissue-specific regulatory elements within the p1 non-coding sequences or flanking regions, the data from transgenic and natural alleles suggest that the tissue-specific pigmentation pattern characteristic of the P1-wr phenotype is epigenetically controlled.  相似文献   

19.
C L Harker  T H Ellis    E S Coen 《The Plant cell》1990,2(3):185-194
Chalcone synthase (CHS) is a key enzyme in the biosynthesis of diverse flavonoids involved in disease resistance, nodulation, and pigmentation in pea. We describe a multigene family encoding CHS and the effects of two regulatory loci, a and a2, on the pattern of expression of three of its member genes. Two of the genes, CHS1 and CHS3, are expressed in both petal and root tissue, whereas expression of a third gene, CHS2, is detected only in roots. The products encoded by the a and a2 loci are required for the expression of the CHS1 gene and for wild-type levels of expression of the CHS3 gene in petal tissue. In root tissue, all three CHS genes are expressed and induced by CuCl2 regardless of the genotype at the a and a2 loci. These results show that the various members of the CHS multigene family interact in diverse ways with multiple genetic signals in the plant, providing a basis for the differential expression of these genes. Spatially specific genetic regulation of distinct members of a multigene family has been clearly demonstrated.  相似文献   

20.
Studies at the nucleotide level on the nuclear flower development gene cycloidea (cyc) in seven Antirrhinum, two Misopates, one Linaria, one Cymbalaria, and one Digitalis species revealed that cyc is a member of a gene family composed of at least five apparently functional genes. The estimated ages of the duplication events that created this gene family are from 7.5 Myr to more than 75 Myr. We also report the first estimates of DNA sequence diversity for species of Antirrhinum and Misopates. Low between-species variability suggests that this group of species may have diverged recently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号