首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Intensity inhomogeneity causes many difficulties in image segmentation and the understanding of magnetic resonance (MR) images. Bias correction is an important method for addressing the intensity inhomogeneity of MR images before quantitative analysis. In this paper, a modified model is developed for segmenting images with intensity inhomogeneity and estimating the bias field simultaneously. In the modified model, a clustering criterion energy function is defined by considering the difference between the measured image and estimated image in local region. By using this difference in local region, the modified method can obtain accurate segmentation results and an accurate estimation of the bias field. The energy function is incorporated into a level set formulation with a level set regularization term, and the energy minimization is conducted by a level set evolution process. The proposed model first appeared as a two-phase model and then extended to a multi-phase one. The experimental results demonstrate the advantages of our model in terms of accuracy and insensitivity to the location of the initial contours. In particular, our method has been applied to various synthetic and real images with desirable results.  相似文献   

2.
《IRBM》2022,43(3):161-168
BackgroundAccurate delineation of organs at risk (OARs) is critical in radiotherapy. Manual delineation is tedious and suffers from both interobserver and intraobserver variability. Automatic segmentation of brain MR images has a wide range of applications in brain tumor radiotherapy. In this paper, we propose a multi-atlas based adaptive active contour model for OAR automatic segmentation in brain MR images.MethodsThe proposed method consists of two parts: multi-atlas based OAR contour initiation and an adaptive edge and local region based active contour evolution. In the adaptive active contour model, we define an energy functional with an adaptive edge intensity fitting force which is responsible for evaluating contour inwards or outwards, and a local region intensity fitting force which guides the evolution of the contour.ResultsExperimental results show that the proposed method achieved more accurate segmentation results in brainstem, eyes and lens automatic segmentation with the Dice Similar Coefficient (DSC) value of 87.19%, 91.96%, 77.11% respectively. Besides, the dosimetric parameters also demonstrate the high consistency of the manual OAR delineations and the auto segmentation results of the proposed method in brain tumor radiotherapy.ConclusionsThe geometric and dosimetric evaluations show the desirable performance of the proposed method on the application of OARs segmentations in brain tumor radiotherapy.  相似文献   

3.
Segmentation of brain MR images plays an important role in longitudinal investigation of developmental, aging, disease progression changes in the cerebral cortex. However, most existing brain segmentation methods consider multiple time-point images individually and thus cannot achieve longitudinal consistency. For example, cortical thickness measured from the segmented image will contain unnecessary temporal variations, which will affect the time related change pattern and eventually reduce the statistical power of analysis. In this paper, we propose a 4D segmentation framework for the adult brain MR images with the constraint of cortical thickness variations. Specifically, we utilize local intensity information to address the intensity inhomogeneity, spatial cortical thickness constraint to maintain the cortical thickness being within a reasonable range, and temporal cortical thickness variation constraint in neighboring time-points to suppress the artificial variations. The proposed method has been tested on BLSA dataset and ADNI dataset with promising results. Both qualitative and quantitative experimental results demonstrate the advantage of the proposed method, in comparison to other state-of-the-art 4D segmentation methods.  相似文献   

4.
Liver segmentation from abdominal computed tomography (CT) volumes is extremely important for computer-aided liver disease diagnosis and surgical planning of liver transplantation. Due to ambiguous edges, tissue adhesion, and variation in liver intensity and shape across patients, accurate liver segmentation is a challenging task. In this paper, we present an efficient semi-automatic method using intensity, local context, and spatial correlation of adjacent slices for the segmentation of healthy liver regions in CT volumes. An intensity model is combined with a principal component analysis (PCA) based appearance model to exclude complex background and highlight liver region. They are then integrated with location information from neighboring slices into graph cuts to segment the liver in each slice automatically. Finally, a boundary refinement method based on bottleneck detection is used to increase the segmentation accuracy. Our method does not require heavy training process or statistical model construction, and is capable of dealing with complicated shape and intensity variations. We apply the proposed method on XHCSU14 and SLIVER07 databases, and evaluate it by MICCAI criteria and Dice similarity coefficient. Experimental results show our method outperforms several existing methods on liver segmentation.  相似文献   

5.
PurposeIn this article, we propose a novel, semi-automatic segmentation method to process 3D MR images of the prostate using the Bhattacharyya coefficient and active band theory with the goal of providing technical support for computer-aided diagnosis and surgery of the prostate.MethodsOur method consecutively segments a stack of rotationally resectioned 2D slices of a prostate MR image by assessing the similarity of the shape and intensity distribution in neighboring slices. 2D segmentation is first performed on an initial slice by manually selecting several points on the prostate boundary, after which the segmentation results are propagated consecutively to neighboring slices. A framework of iterative graph cuts is used to optimize the energy function, which contains a global term for the Bhattacharyya coefficient with the help of an auxiliary function. Our method does not require previously segmented data for training or for building statistical models, and manual intervention can be applied flexibly and intuitively, indicating the potential utility of this method in the clinic.ResultsWe tested our method on 3D T2-weighted MR images from the ISBI dataset and PROMISE12 dataset of 129 patients, and the Dice similarity coefficients were 90.34 ± 2.21% and 89.32 ± 3.08%, respectively. The comparison was performed with several state-of-the-art methods, and the results demonstrate that the proposed method is robust and accurate, achieving similar or higher accuracy than other methods without requiring training.ConclusionThe proposed algorithm for segmenting 3D MR images of the prostate is accurate, robust, and readily applicable to a clinical environment for computer-aided surgery or diagnosis.  相似文献   

6.
PurposeTo develop an automatic multimodal method for segmentation of parotid glands (PGs) from pre-registered computed tomography (CT) and magnetic resonance (MR) images and compare its results to the results of an existing state-of-the-art algorithm that segments PGs from CT images only.MethodsMagnetic resonance images of head and neck were registered to the accompanying CT images using two different state-of-the-art registration procedures. The reference domains of registered image pairs were divided on the complementary PG regions and backgrounds according to the manual delineation of PGs on CT images, provided by a physician. Patches of intensity values from both image modalities, centered around randomly sampled voxels from the reference domain, served as positive or negative samples in the training of the convolutional neural network (CNN) classifier. The trained CNN accepted a previously unseen (registered) image pair and classified its voxels according to the resemblance of its patches to the patches used for training. The final segmentation was refined using a graph-cut algorithm, followed by the dilate-erode operations.ResultsUsing the same image dataset, segmentation of PGs was performed using the proposed multimodal algorithm and an existing monomodal algorithm, which segments PGs from CT images only. The mean value of the achieved Dice overlapping coefficient for the proposed algorithm was 78.8%, while the corresponding mean value for the monomodal algorithm was 76.5%.ConclusionsAutomatic PG segmentation on the planning CT image can be augmented with the MR image modality, leading to an improved RT planning of head and neck cancer.  相似文献   

7.
To measure the activity of neurons using whole-brain activity imaging, precise detection of each neuron or its nucleus is required. In the head region of the nematode C. elegans, the neuronal cell bodies are distributed densely in three-dimensional (3D) space. However, no existing computational methods of image analysis can separate them with sufficient accuracy. Here we propose a highly accurate segmentation method based on the curvatures of the iso-intensity surfaces. To obtain accurate positions of nuclei, we also developed a new procedure for least squares fitting with a Gaussian mixture model. Combining these methods enables accurate detection of densely distributed cell nuclei in a 3D space. The proposed method was implemented as a graphical user interface program that allows visualization and correction of the results of automatic detection. Additionally, the proposed method was applied to time-lapse 3D calcium imaging data, and most of the nuclei in the images were successfully tracked and measured.  相似文献   

8.
Automatic image segmentation of immunohistologically stained breast tissue sections helps pathologists to discover the cancer disease earlier. The detection of the real number of cancer nuclei in the image is a very tedious and time consuming task. Segmentation of cancer nuclei, especially touching nuclei, presents many difficulties to separate them by traditional segmentation algorithms. This paper presents a new automatic scheme to perform both classification of breast stained nuclei and segmentation of touching nuclei in order to get the total number of cancer nuclei in each class. Firstly, a modified geometric active contour model is used for multiple contour detection of positive and negative nuclear staining in the microscopic image. Secondly, a touching nuclei method based on watershed algorithm and concave vertex graph is proposed to perform accurate quantification of the different stains. Finally, benign nuclei are identified by their morphological features and they are removed automatically from the segmented image for positive cancer nuclei assessment. The proposed classification and segmentation schemes are tested on two datasets of breast cancer cell images containing different level of malignancy. The experimental results show the superiority of the proposed methods when compared with other existing classification and segmentation methods. On the complete image database, the segmentation accuracy in term of cancer nuclei number is over than 97%, reaching an improvement of 3–4% over earlier methods.  相似文献   

9.
Improving gene quantification by adjustable spot-image restoration   总被引:1,自引:0,他引:1  
MOTIVATION: One of the major factors that complicate the task of microarray image analysis is that microarray images are distorted by various types of noise. In this study a robust framework is proposed, designed to take into account the effect of noise in microarray images in order to assist the demanding task of microarray image analysis. The proposed framework, incorporates in the microarray image processing pipeline a novel combination of spot adjustable image analysis and processing techniques and consists of the following stages: (1) gridding for facilitating spot identification, (2) clustering (unsupervised discrimination between spot and background pixels) applied to spot image for automatic local noise assessment, (3) modeling of local image restoration process for spot image conditioning (adjustable wiener restoration using an empirically determined degradation function), (4) automatic spot segmentation employing seeded-region-growing, (5) intensity extraction and (6) assessment of the reproducibility (real data) and the validity (simulated data) of the extracted gene expression levels. RESULTS: Both simulated and real microarray images were employed in order to assess the performance of the proposed framework against well-established methods implemented in publicly available software packages (Scanalyze and SPOT). Regarding simulated images, the novel combination of techniques, introduced in the proposed framework, rendered the detection of spot areas and the extraction of spot intensities more accurate. Furthermore, on real images the proposed framework proved of better stability across replicates. Results indicate that the proposed framework improves spots' segmentation and, consequently, quantification of gene expression levels. AVAILABILITY: All algorithms were implemented in Matlab (The Mathworks, Inc., Natick, MA, USA) environment. The codes that implement microarray gridding, adaptive spot restoration and segmentation/intensity extraction are available upon request. Supplementary results and the simulated microarray images used in this study are available for download from: ftp://users:bioinformatics@mipa.med.upatras.gr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

10.

Purpose

To overcome the severe intensity inhomogeneity and blurry boundaries in HIFU (High Intensity Focused Ultrasound) ultrasound images, an accurate and efficient multi-scale and shape constrained localized region-based active contour model (MSLCV), was developed to accurately and efficiently segment the target region in HIFU ultrasound images of uterine fibroids.

Methods

We incorporated a new shape constraint into the localized region-based active contour, which constrained the active contour to obtain the desired, accurate segmentation, avoiding boundary leakage and excessive contraction. Localized region-based active contour modeling is suitable for ultrasound images, but it still cannot acquire satisfactory segmentation for HIFU ultrasound images of uterine fibroids. We improved the localized region-based active contour model by incorporating a shape constraint into region-based level set framework to increase segmentation accuracy. Some improvement measures were proposed to overcome the sensitivity of initialization, and a multi-scale segmentation method was proposed to improve segmentation efficiency. We also designed an adaptive localizing radius size selection function to acquire better segmentation results.

Results

Experimental results demonstrated that the MSLCV model was significantly more accurate and efficient than conventional methods. The MSLCV model has been quantitatively validated via experiments, obtaining an average of 0.94 for the DSC (Dice similarity coefficient) and 25.16 for the MSSD (mean sum of square distance). Moreover, by using the multi-scale segmentation method, the MSLCV model’s average segmentation time was decreased to approximately 1/8 that of the localized region-based active contour model (the LCV model).

Conclusions

An accurate and efficient multi-scale and shape constrained localized region-based active contour model was designed for the semi-automatic segmentation of uterine fibroid ultrasound (UFUS) images in HIFU therapy. Compared with other methods, it provided more accurate and more efficient segmentation results that are very close to those obtained from manual segmentation by a specialist.  相似文献   

11.
Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.  相似文献   

12.
Active contour models are of great importance for image segmentation and can extract smooth and closed boundary contours of the desired objects with promising results. However, they cannot work well in the presence of intensity inhomogeneity. Hence, a novel region-based active contour model is proposed by taking image intensities and ‘vesselness values’ from local phase-based vesselness enhancement into account simultaneously to define a novel multi-feature Gaussian distribution fitting energy in this paper. This energy is then incorporated into a level set formulation with a regularization term for accurate segmentations. Experimental results based on publicly available STructured Analysis of the Retina (STARE) demonstrate our model is more accurate than some existing typical methods and can successfully segment most small vessels with varying width.  相似文献   

13.
Level set based methods are being increasingly used in image segmentation. In these methods, various shape constraints can be incorporated into the energy functionals to obtain the desired shapes of the contours represented by their zero level sets of functions. Motivated by the isoperimetric inequality in differential geometry, we propose a segmentation method in which the isoperimetric constrain is integrated into a level set framework to penalize the ratio of its squared perimeter to its enclosed area of an active contour. The new model can ensure the compactness of segmenting objects and complete missing or/and blurred parts of their boundaries simultaneously. The isoperimetric shape constraint is free of explicit expressions of shapes and scale-invariant. As a result, the proposed method can handle various objects with different scales and does not need to estimate parameters of shapes. Our method can segment lesions with blurred or/and partially missing boundaries in ultrasound, Computed Tomography (CT) and Magnetic Resonance (MR) images efficiently. Quantitative evaluation also confirms that the proposed method can provide more accurate segmentation than two well-known level set methods. Therefore, our proposed method shows potential of accurate segmentation of lesions for applying in diagnoses and surgical planning.  相似文献   

14.
目的:采用MR脑肿瘤图像分割与矩方法进行结合,以获取特定器官及组织的轮廓。方法:对MR脑肿瘤图像进行分割,并对分割的结果进行矩描述。通过分析当前常用的医学图像分割方法,采用了一种基于形变模型的医学图像分割方法,并按照相应的理论算法模型和实现步骤对医学图像进行了处理,最后用Visual C 6.0编程,并对MR脑肿瘤图像进行分割实验。结果:从切割的图形中可以看出,本分割方法分割边界清晰,总体不确定性较小,利用矩技术所提取的图像特征在基于内容的图像检索中是有效的。结论:本分割方法切实可行,分割效果较好,为进一步的MR脑肿瘤图像分析和研究提供了一种有效工具。  相似文献   

15.
Primary crop losses in agriculture are due to leaf diseases, which farmers cannot identify early. If the diseases are not detected early and correctly, then the farmer will have to undergo huge losses. Therefore, in the field of agriculture, the detection of leaf diseases in tomato crops plays a vital role. Recent advances in computer vision and deep learning techniques have made disease prediction easy in agriculture. Tomato crop front side leaf images are considered for research due to their high exposure to diseases. The image segmentation process assumes a significant role in identifying disease affected areas on tomato leaf images. Therefore, this paper develops an efficient tomato crop leaf disease segmentation model using an enhanced radial basis function neural network (ERBFNN). The proposed ERBFNN is enhanced using the modified sunflower optimization (MSFO) algorithm. Initially, the noise present in the images is removed by a Gaussian filter followed by CLAHE (contrast-limited adaptive histogram equalization) based on contrast enhancement and un-sharp masking. Then, color features are extracted from each leaf image and given to the segmentation stage to segment the disease portion of the input image. The performance of the proposed ERBFNN approach is estimated using different metrics such as accuracy, Jaccard coefficient (JC), Dice's coefficient (DC), precision, recall, F-Measure, sensitivity, specificity, and mean intersection over union (MIoU) and are compared with existing state-of-the-art methods of radial basis function (RBF), fuzzy c-means (FCM), and region growing (RG). The experimental results show that the proposed ERBFNN segmentation model outperformed with an accuracy of 98.92% compared to existing state-of-the-art methods like RBFNN, FCM, and RG, as well as previous research work.  相似文献   

16.
Our application concerns the automated detection of vessels in retinal images to improve understanding of the disease mechanism, diagnosis and treatment of retinal and a number of systemic diseases. We propose a new framework for segmenting retinal vasculatures with much improved accuracy and efficiency. The proposed framework consists of three technical components: Retinex-based image inhomogeneity correction, local phase-based vessel enhancement and graph cut-based active contour segmentation. These procedures are applied in the following order. Underpinned by the Retinex theory, the inhomogeneity correction step aims to address challenges presented by the image intensity inhomogeneities, and the relatively low contrast of thin vessels compared to the background. The local phase enhancement technique is employed to enhance vessels for its superiority in preserving the vessel edges. The graph cut-based active contour method is used for its efficiency and effectiveness in segmenting the vessels from the enhanced images using the local phase filter. We have demonstrated its performance by applying it to four public retinal image datasets (3 datasets of color fundus photography and 1 of fluorescein angiography). Statistical analysis demonstrates that each component of the framework can provide the level of performance expected. The proposed framework is compared with widely used unsupervised and supervised methods, showing that the overall framework outperforms its competitors. For example, the achieved sensitivity (0:744), specificity (0:978) and accuracy (0:953) for the DRIVE dataset are very close to those of the manual annotations obtained by the second observer.  相似文献   

17.
N. Makni  P. Puech  O. Colot  S. Mordon  N. Betrouni 《IRBM》2011,32(4):251-265
Recent progress in magnetic resonance imaging (MRI) has enabled new prostate cancer diagnosis techniques. The newest challenges in this field are to enhance image-based tumours detection. In such a context, the extraction of prostate's contours is a crucial step in the interpretation of MR images, and is usually carried out by an expert radiologist. This is though a tedious time consuming task, especially in 3D images (like CT and MRI). In addition, manual delineation is not reproducible because of differences between observers. In this paper, we introduce a novel method for automatic segmentation of prostate MRI that could help physicians in extracting 3D outlines of the gland. First a deformable shape model is used to obtain a first segmentation. The latter is refined using intensity information and Markov Random Fields modelling of regions. We use the Iterative Conditional Mode for optimising voxels’ labelling according to a Maximum A Posteriori criterion. Results from evaluation on patients’ data show that the method is satisfyingly accurate, fast and robust which makes it suitable for use in a clinical context. A multicentric validation and transfer to the industry would bring the contributions of this method to clinical routine and help improving diagnosis of prostate cancer.  相似文献   

18.
Characterization of tissues like brain by using magnetic resonance (MR) images and colorization of the gray scale image has been reported in the literature, along with the advantages and drawbacks. Here, we present two independent methods; (i) a novel colorization method to underscore the variability in brain MR images, indicative of the underlying physical density of bio tissue, (ii) a segmentation method (both hard and soft segmentation) to characterize gray brain MR images. The segmented images are then transformed into color using the above-mentioned colorization method, yielding promising results for manual tracing. Our color transformation incorporates the voxel classification by matching the luminance of voxels of the source MR image and provided color image by measuring the distance between them. The segmentation method is based on single-phase clustering for 2D and 3D image segmentation with a new auto centroid selection method, which divides the image into three distinct regions (gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) using prior anatomical knowledge). Results have been successfully validated on human T2-weighted (T2) brain MR images. The proposed method can be potentially applied to gray-scale images from other imaging modalities, in bringing out additional diagnostic tissue information contained in the colorized image processing approach as described.  相似文献   

19.

Purpose

Volumetric measurements of neonatal brain tissues may be used as a biomarker for later neurodevelopmental outcome. We propose an automatic method for probabilistic brain segmentation in neonatal MRIs.

Materials and Methods

In an IRB-approved study axial T1- and T2-weighted MR images were acquired at term-equivalent age for a preterm cohort of 108 neonates. A method for automatic probabilistic segmentation of the images into eight cerebral tissue classes was developed: cortical and central grey matter, unmyelinated and myelinated white matter, cerebrospinal fluid in the ventricles and in the extra cerebral space, brainstem and cerebellum. Segmentation is based on supervised pixel classification using intensity values and spatial positions of the image voxels. The method was trained and evaluated using leave-one-out experiments on seven images, for which an expert had set a reference standard manually. Subsequently, the method was applied to the remaining 101 scans, and the resulting segmentations were evaluated visually by three experts. Finally, volumes of the eight segmented tissue classes were determined for each patient.

Results

The Dice similarity coefficients of the segmented tissue classes, except myelinated white matter, ranged from 0.75 to 0.92. Myelinated white matter was difficult to segment and the achieved Dice coefficient was 0.47. Visual analysis of the results demonstrated accurate segmentations of the eight tissue classes. The probabilistic segmentation method produced volumes that compared favorably with the reference standard.

Conclusion

The proposed method provides accurate segmentation of neonatal brain MR images into all given tissue classes, except myelinated white matter. This is the one of the first methods that distinguishes cerebrospinal fluid in the ventricles from cerebrospinal fluid in the extracerebral space. This method might be helpful in predicting neurodevelopmental outcome and useful for evaluating neuroprotective clinical trials in neonates.  相似文献   

20.
Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR) images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentation method desirable. In this regard, this paper presents a new segmentation method for brain MR images, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method assumes that the major brain tissues, namely, gray matter, white matter, and cerebrospinal fluid from the MR images are considered to have different textural properties. The dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel, while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR image segmentation. An unsupervised feature selection method is introduced, based on maximum relevance-maximum significance criterion, to select relevant and significant textural features for segmentation problem, while the mathematical morphology based skull stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The performance of the proposed method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号