首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. Souron  T. Lapole 《IRBM》2018,39(5):291-294

Background

Local vibration (LV) training is efficient to improve muscle strength due to adaptations within the central nervous system. However, little is known about adaptations at the muscular level after this form of training. The aim of this study was to assess the effect of LV training on muscle elastic properties using supersonic shear imaging technique.

Methods

Twenty-eight subjects were allocated to a training (VIB, n=14) or control (CON, n=14) group. The VIB group performed twenty-four 1-h sessions (3 sessions/wk) of 100-Hz vibration applied to the tibialis anterior. Maximal force (MVC) as well as active and passive muscle stiffness (i.e. using elastography) were assessed before and after the LV training.

Results

MVC was increased by 9.4 ± 9.7% in VIB (p<0.001) while no changes were reported in CON (p=0.52). No changes were reported in passive and active muscle stiffness for both groups (p>0.05).

Conclusion

Our results suggest that adaptations in elastic muscle properties do not explain the increased muscle strength reported after LV training.  相似文献   

2.

Purpose

Today's orthotics should be designed to apply the external orthosis moment to the knee joint solely during the stance phase instead of the entire gait cycle. The aim of this study was to validate the reliability of a simple device for measuring forces at the leg–orthosis interface and describe the behavior of an innovating dynamic unloader knee brace built to interrupt its mechanical action during large knee flexion (swing phase of gait).

Methods

A compression testing machine was used to apply known (standard) forces to the device (modeled forces) and the results were compared.

Results

The low absolute mean bias (4%), the narrow agreement limits associated with the Bland and Altman analysis as well as the significant linear correlation (r=0.99; p<0.001) validate the agreement between standard and modeled forces. Likewise, the low standard error of measurement between trials (1.3%) and the intraclass correlation coefficient (1.00) reflect high test-retest reliability.

Conclusion

These results demonstrate the validity of the proposed device for measuring constraints induced by the dynamic unloader knee brace. An example of an application is provided through an orthosis moment calculation using kinematic data, which reveal a changeable mechanical action, necessary to improve comfort resulting in potentially better compliance.  相似文献   

3.
N. Shanmathi  M. Jagannath 《IRBM》2018,39(5):359-367

Background

Remote health monitoring plays a major role in handling the critical situation of patients and avoiding death and also enhancing the quality of healthcare services. The effective real time monitoring with accurate decision has to be made in advance with the help of decision making system by continuously acquiring biosignals.

Objectives

The main objective was to outline the research on remote patient health monitoring system that constitutes the multimodal biosignal acquisition system, thereby providing multi-label classification and clinical decision support system (CDSS).

Methods and results

A review was conducted with search terms such as multi-label classification, clinical decision support system, context-awareness and remote health monitoring. The study criteria included the randomized clinical trials evaluating the impact of efficient remote health monitoring system which incorporates CDSS for context-awareness systems by correlating several vital signs. From the total papers (n=52) which were included in the review, the major concentration of the review is multi-label classification (n=21, 40%). Further, this article included the review in context-awareness methods (n=5, 10%), clinical decision support systems (n=12, 23%), different means of biosignal acquisition and pre-processing (n=5, 10%), databases and software techniques for developing learning algorithms (n=3, 6%) and from general category (n=6, 12%). Several studies were effectively included which provides faster diagnosis for critically ill-patients. It is decisive for the critically ill-patients to be treated at the right time with proper and effective treatment which can be done efficiently using the CDSS and multi-label classification. The disease labels are classified as single and multi-labels where multi-label classification includes the disease labels for the correlated multiple vital signs and single label classification includes disease labels for individual vital signs. Further, on developing the logical learning model using multi-label classification, decision support system can be enhanced using context-awareness methods to predict the future vital signs, thereby providing an alert to the patients or doctors to take necessary actions.

Conclusion

The proposed system includes the model that provides the correlations of several biosignals like electrocardiogram (ECG), peripheral capillary oxygen saturation (SPO2), body temperature and heartbeat, thereby identifying the critical situations and making the decisions using CDSS that helps in taking the necessary clinical interventions.  相似文献   

4.

Background

Dedicated devices like GT3X+, Actical or ActivPal have been widely used to measure physical activity (PA) levels by using cut-points on activity counts. However, the calculation of activity counts relies on proprietary software. Since smartphones incorporate accelerometers they are suitable candidates to determine PA levels in a wider population.

Objective

Our aim was to compare several algorithms so that smartphones can reproduce the results obtained with GT3X+. The influence of smartphone location was also investigated.

Methods

Volunteers participated in the experiment performing several activities carrying two smartphones (hip and pocket) and one GT3X+ (hip). Four algorithms (A1–A4) were considered to obtain GT3X+ counts from smartphone accelerometer signals. A1 was based on a traditional filtering on temporal domain and a posterior calculation of the area under the curve. A2 was based on computing histograms of acceleration values, which were used as independent variables in a standard linear regression procedure. A3 also used a linear regression, but in this case the independent variables were power spectrum bands, leading to a kind of filtering in the frequency domain. A4 was based on a direct measure of area under the rectified curve of the raw accelerometer signal. Performance was measured in terms of raw activity counts or the corresponding PA level classification. The influence of the algorithm was tested with a Quade test. Multiple comparisons were performed with Wilcoxon test with Bonferroni's correction. Besides, battery consumption was also measured as a secondary parameter. The output of the selected algorithm was compared with GT3X+ counts using correlation (pearson and spearman) and agreement (Intra-Class Coefficient, ICC and Bland–Altmann plots for raw counts, and weighted kappa for activity levels). Several experimental conditions regarding smartphone location were compared with Wilcoxon tests.

Results

Thirty-two volunteers participated in the experiment. More refined algorithms based on filtering techniques did not prove to achieve better performance than A2 or A4. In terms of classification of PA level, A4 got the lowest error rate, although in some cases the differences with other algorithms were not statistically significant (p-value > 0.05). A4 is also the simplest and the one that implies less battery depletion. The comparison of A4 with GT3X+ gave good agreement (ICC=0.937) and correlation (spearman=0.927) for raw counts and good agreement when classifying four or two PA levels (weighted kappa=0.874 or 0.923 respectively). Besides, in real situations, activity classification into four levels was significantly improved (p-value<0.05) if data from several body locations were used to find model parameters.

Conclusions

Simple algorithms can reproduce the results of GT3X+. Thus, smartphones could be used to control the fulfillment of PA recommendations previously validated with cut-points. However, it must be acknowledged that accelerometers are not the gold standard to measure PA.  相似文献   

5.
In this paper, we quantify the extent to which shoulder orientation, upper-arm electromyography (EMG), and forearm EMG are predictors of distal arm joint angles during reaching in eight subjects without disability as well as three subjects with a unilateral transhumeral amputation and targeted reinnervation. Prior studies have shown that shoulder orientation and upper-arm EMG, taken separately, are predictors of both elbow flexion/extension and forearm pronation/supination. We show that, for eight subjects without disability, shoulder orientation and upper-arm EMG together are a significantly better predictor of both elbow flexion/extension during unilateral (R2=0.72) and mirrored bilateral (R2=0.72) reaches and of forearm pronation/supination during unilateral (R2=0.77) and mirrored bilateral (R2=0.70) reaches. We also show that adding forearm EMG further improves the prediction of forearm pronation/supination during unilateral (R2=0.82) and mirrored bilateral (R2=0.75) reaches. In principle, these results provide the basis for choosing inputs for control of transhumeral prostheses, both by subjects with targeted motor reinnervation (when forearm EMG is available) and by subjects without target motor reinnervation (when forearm EMG is not available). In particular, we confirm that shoulder orientation and upper-arm EMG together best predict elbow flexion/extension (R2=0.72) for three subjects with unilateral transhumeral amputations and targeted motor reinnervation. However, shoulder orientation alone best predicts forearm pronation/supination (R2=0.88) for these subjects, a contradictory result that merits further study.  相似文献   

6.
7.
Y. Matanga  K. Djouani  A. Kurien 《IRBM》2018,39(5):324-333

Context

Sensorimotor rhythms (SMR) have been the neuronal phenomena of choice in non-invasive EEG-based endogenous brain computer interfaces (BCIs) for more than two decades and SMR-based BCIs have achieved the highest degree of freedom control so far. Nevertheless, they are subject to long periods of training prior to attaining a satisfactory level of control requiring users to learn to modulate their rhythms. The goal of this work is to analyse this problem, discuss the causes of the slow rise in performance and provide recommendations on alternative solutions to quicken control attainment.

Methods

The study has been conducted by both theoretical and empirical analysis. A theoretical model has been developed that explains the principle operation of SMR-based BCIs focusing on major performance contributors respectively the user, periodic feature selection and the translation model thus contrasting user adaptation and machine learning. Five able-bodied subjects (age: 26±2.55) participated in six sessions of online computer cursor control experiments over three weeks to evaluate control attainment performances and gather data for statistical analysis (~1152 trials per subject). Correlation (r2) between user control features and target position over sessions was assessed as an estimate of neural adaptation and the predictive power of the translation algorithm (10 × 10 fold cross-validation) was calculated over sessions as an estimate of machine adaptation. Auxiliary performance metrics were evaluated.

Results

Features-target correlation increased over sessions, while at the same time the predictive accuracy (R2) of the translation model remained averagely steady and very low (Rbest2=0.04) demonstrating continuous user adaptation and low model predictive accuracy. Periodic feature selection was theoretically discussed to be very instrumental and its relevance was empirically illustrated.

Conclusions

The study concludes that the slow control attainment in SMR-based BCIs is due to its reliance on user training (neural adaptation) which is adaptive but too slow in the context of SMR modulations and due to the weak decoding of the neuronal phenomenon utilised by the user. As a recommendation, the optimality of the feature selection algorithm could be looked at to guarantee the use of the most relevant features. However and most importantly the predictive power of the translation model should be significantly improved in order to quicken control attainment as thereafter the control attainment effort could be shifted from neural adaptation to machine learning.  相似文献   

8.
9.
10.
11.
We compare two constitutive models proposed to model the elastinous constituents of an artery. Holzapfel and Weizsäcker [1998. Biomechanical behavior of the arterial wall and its numerical characterization. Comput. Biol. Med. 28, 377–392] attribute a neo-Hookean response, i.e. Ψ=c(I1-3)), to the elastin whilst Zulliger et al. [2004a. A strain energy function for arteries accounting for wall composition and structure. J. Biomech. 37, 989–1000] propose Ψ=c(I1-3)3/2. We analyse these constitutive models for two specific cases: (i) uniaxial extension of an elastinous sheet; (ii) inflation of a cylindrical elastinous membrane. For case (i) we illustrate the functional relationships between: (a) the Cauchy stress (CS) and the Green–Lagrange (GL) strain; (b) the tangent modulus (gradient of the CS–GL strain curve) and linearised strain. The predicted mechanical responses are compared with recent uniaxial extension tests on elastin [Gundiah, N., Ratcliffe, M.B., Pruitt, L.A., 2007. Determination of strain energy function for arterial elastin: experiments using histology and mechanical tests. J. Biomech. 40, 586–594; Lillie, M.A., Gosline, J.M., 2007a. Limits to the durability of arterial elastic tissue. Biomaterials 28, 2021–2031; 2007b. Mechanical properties of elastin along the thoracic aorta in the pig. J. Biomech. 40, 2214–2221]. The neo-Hookean model accurately predicts the mechanical response of a single elastin fibre. However, it is unable to accurately capture the mechanical response of arterial elastin, e.g. the initial toe region of arterial elastin (if it exists) or the gradual increase in modulus of arterial elastin that occurs as it is stretched. The alternative constitutive model (n=32) yields a nonlinear mechanical response that departs from recent uniaxial test data mentioned above, for the same stretch range. For case (ii) we illustrate the pressure–circumferential stretch relationships and the gradients of the pressure–circumferential stretch curves: significant qualitative differences are observed. For the neo-Hookean model, the gradient decreases rapidly to zero, however, for n=32, the gradient decreases more gradually to a constant value. We conclude that whilst the neo-Hookean model has limitations, it appears to capture more accurately the mechanical response of elastin.  相似文献   

12.
13.
14.
15.
16.
17.
《Bio Systems》2009,95(3):233-241
A computer study of the prediction of the protein crystal’s shape and polymorphism of crystal’s structures within the limits resulting from the exploration of the Miyazawa–Jernigan matrix is presented. In this study, a coarse-graining procedure was applied to prepare a two-dimensional growth unit, where instead of full atom representation of the protein a two-type (hydrophobic–hydrophilic, HP) aminoacidal representation was used. The interaction energies between hydrophobic (EHH) aminoacids were chosen from the well-known HP-type models (EHH[4,3,2.3,1]), whereas interaction energies between hydrophobic and hydrophilic aminoacids (EHP) as well as interaction energies between hydrophilic aminoacids (EPP) were chosen from the range: <1,1>, but not all values from this range fulfiled limitations resulting from the exploration of the Miyazawa–Jernigan matrix. Exploring every positively vetted combinations of energy interactions a polymorphism of the unit cell was observed what led to the fact that different final crystal’s shapes were obtained.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号