首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A comparative study of peroxidase and esterase isozymes was carried out at five developmental stages of siliqua in order to characterize twelve genotypes of Indian mustard. The studies showed nearly the same number of isozyme bands at every stage for peroxidase and a varying number of isozyme bands for esterase. The appearance and disappearance of bands, along with their intensity scores, indicated the role of different isozymes at different stages of siliqua development. It has been ascertained that these patterns, especially the intensity scores, can be successfully used to characterize different Indian mustard genotypes.  相似文献   

2.
The effect of 100 μM cobalt (Co) on plant growth and on biochemical parameters indicative of oxidative stress was investigated in a hydroponic experiment. The responses of antioxidant enzymes and compounds of the ascorbate–glutathione (AsA–GSH) cycle were also assessed on the hyperaccumulating plant, Indian mustard (Brasssica juncea L.). The effect of excess Co was associated with a significant increase in the levels of proline, carbonylated protein, malondialdehyde, superoxide anion (O 2 ·? ), and hydrogen peroxide (H2O2), and resulted in the accumulation of Co. Co toxicity was associated with an increase in the volume of palisade and spongy cells, and a reduction in the number of chloroplasts per cell. Co-induced cell death was characterized by DNA fragmentation and a 36 kDa DNase activity. Despite decreased catalase activity, peroxidase, superoxide dismutase, and AsA–GSH cycle-related enzymes including monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase exhibited remarkable induction under Co stress. Furthermore, the contents of reduced and oxidized forms of ascorbate and glutathione were significantly increased with Co supplementation. Co treatment led to the activation of 44 and 46 kDa mitogen-activated protein kinase (MAPK) and indicated the role of the MAPK cascade in transducing Co-mediated signals. The present results suggest that excess Co reduces seedling growth by inducing oxidative stress related to lipid peroxidation and overproduction of O 2 ·? and H2O2. The stimulated activities of antioxidative enzymes and induction of MAPKs did not reverse the oxidative stress caused by Co-induced reactive oxygen species generation in Indian mustard seedlings.  相似文献   

3.
Plants of Indian mustard (Brassica juncea L.) were exposed to different concentrations (15, 30, 60, 120 microM) of (Cd, Cr, Cu, Pb) for 28 and 56 d for accumulation and detoxification studies. Metal accumulation in roots and shoots were analyzed and it was observed that roots accumulated a significant amount of Cd (1980 microg g(-1) dry weight), Cr (1540 microg g(-1) dry weight), Cu (1995 microg g(-1) dry weight), and Pb (2040 microg g(-1) dry weight) after 56 d of exposure, though in shoot this was 1110, 618, 795, and 409 microg g(-1) dry weight of Cd, Cr, Cu, and Pb, respectively. In order to assess detoxification mechanisms, non-protein thiols (NP-SH), glutathione (GSH) and phytochelatins (PCs) were analyzed in plants. An increase in the quantity of NP-SH (9.55), GSH (8.30), and PCs (1.25) micromol g(-1) FW were found at 15 microM of Cd, however, a gradual decline in quantity was observed from 15 microM of Cd onwards, after 56 d of exposure. For genotoxicity in plants, cytogenetic end-points such as mitotic index (MI), micronucleus formation (MN), mitotic aberrations (MA) and chromosome aberrations (CA) were examined in root meristem cells of B. juncea. Exposure of Cd revealed a significant (P < 0.05) inhibition of MI, induction of MA, CA, and MN in the root tips for 24 h. However, cells examined at 24 h post-exposure showed concentration-wise recovery in all the endpoints. The data revealed that Indian mustard could be used as a potential accumulator of Cd, Cr, Cu, and Pb due to a good tolerance mechanisms provided by combined/concerted action of NP-SH, GSH, and PCs. Also, exposure of Cd can cause genotoxic effects in B. juncea L. through chromosomal mutations, MA, and MN formation.  相似文献   

4.
Summary The cytoplasmic substitution lines of Brassica juncea (L.) Coss were evaluated for their field resistance to Alternaria blight (Alternaria brassicae). The euplasmic B. juncea cv. RLM 198 had a mesothetic reaction while alloplasmic B. juncea lines with cytoplasms of B. campestris, B. chinensis, and B. japonica were highly susceptible. B. nigra cytoplasm did not have any effect on the disease reaction of the B. juncea genome. However, the alloplasmic lines with the cytoplasm of B. napus and B. carinata revealed a comparatively higher degree of resistance. The study underlined the utility of cytoplasmic manipulations in modifying the phenotypic expression of nuclear genes.  相似文献   

5.
Abstract

UV-B radiation (280–320 nm) as an environmental stress has damaging effect on plants and its overexposure can potentially interfere with growth and development. The effect of thiourea (TU) on UV-B stress tolerance of 10-day-old Brassica juncea seedlings subjected to supplementary UV-B for 5 days was investigated. An increase in the UV-B absorbing compounds anthocyanin, flavonoids and phenolic compounds was observed in UV-B + TU treated seedlings as compared to that of control. The enhanced synthesis of UV-B screening compounds resulted in lesser damage to chlorophyll and also gain in fresh weight and dry weight in UV-B + TU as compared to UV-B alone treatment. The enzymatic activities of guaiacol peroxidase (GPX) and superoxide dismutase (SOD) also increased in UV-B + TU. The expression profiling of phenylalanine ammonia lyase (pal) and chalcone synthase (chs) indicated an upregulation under UV-B + TU treatment, compared to that of control, suggesting that TU treatment ensured an early and efficient induction of flavonoid biosynthetic pathway. The results indicate that TU helps in ameliorating the damaging effects of UV-B stress by efficiently maintaining the antioxidant status and attenuating the penetration of the UV-B.  相似文献   

6.
《Bioresource technology》2000,71(3):273-277
The effects of different concentrations of lead nitrate on root, hypocotyl and shoot growth of Indian mustard (Brassica juncea var. Megarrhiza), and the uptake and accumulation of Pb2+ by its roots, hypocotyls and shoots were investigated in the present study. The concentrations of lead nitrate (Pb(NO3)2) used were in the range of 10−5–10−3 M. Root growth decreased progressively with increasing concentration of Pb2+ in solutions. The seedlings exposed to 10−3 M Pb exhibited substantial growth reduction and produced chlorosis. Brassica juncea has considerable ability to remove Pb from solutions and accumulate it. The Pb content in roots of B. juncea increased with increasing solution concentration of Pb2+. The amount of Pb in roots of plants treated with 10−4, 10−3 and 10−5 M Pb2+ were 184-, 37- and 6-fold, respectively, greater than that of roots of the control plant. However, the plants transported and concentrated only a small amount of Pb in their hypocotyls and shoots, except for the group treated with 10−3 M Pb2+.  相似文献   

7.
《Plant science》1987,53(3):201-208
The systemic insecticides namely phorate (Thimet 10 G) oxydemeton methyl (metasystox 25 EC) and dimethoate (Rogor 30 EC) decreased oil content in the developing seeds of Indian mustard (Brassica juncea L.) but showed an increase in the mature seeds. The inhibitory effect in the developing seed was accompanied by an increase in soluble sugars and a corresponding decrease in malate dehydrogenase and G6P dehydrogenase activity. The relative proportion of triacylglycerols and glycolipids decreased significantly while that of phospholipids and free fatty acids increased in the developing seeds. In the mature seeds, the proportion of triacylglycerols did not change appreciably from that in control. The erucic acid synthesis which was less at 10 and 20 days after fertilization (DAF) increased at 30 DAF with oxydemeton methyl and dimethoate; phorate was ineffective. In mature seeds, the proportion of erucic acid increased at the cost of linoleic and linolenic acids. All the insecticides appreciably decreased the rate of [1-14C]acetate incorporation into lipids both in vivo and in vitro experiments. In the in vivo experiment, the synthesis of polar lipids was enhanced at 10 and 20 DAF, and the higher doses of oxydemeton methyl and dimethoate at 30 DAF. On the other hand, the 14C-incorporation into triacylglycerols showed an opposite trend to that of polar lipids. In the in vitro experiment, oxydemeton methyl and dimethoate enhanced the synthesis of polar lipids at 10 and 20 DAF while these inhibited it at 30 DAF. The synthesis of triacylglycerols was inhibited by the use of these insecticides.  相似文献   

8.
Summary Gene effects, and interactions, and associations between days-to-flower initiation and maturity, number of secondary branches and siliquae per plant, and 1,000-seed weight and yield per plant were studied in a cross of Indian mustard (Brassica juncea (L.) Czern & Coss) using the parents and F1, F2, F3, B1, B2, B11, B12, B21, B22, B1S, B2S, B1F1, B2F1, B1bip, B2bip, F2P1, F2F1, and F2bip generations. A linked digenic model was adequate for all characters studied. According to this model, the main effects, additive and interactions between linked pairs of genes, were present in varying proportions for days-to-flower initiation and maturity and number of siliquae per plant. The contribution of linked epistatic effects, however, was much greater than that of additive effects. Dominance effects contributed significantly to the inheritance of days-to-flower initiation. Duplicate epistasis was observed for all traits except 1,000-seed weight where epistasis was of the complementary type. A complete association among the genes of similar effect (increasing or decreasing) was observed for number of secondary branches and siliquae, and yield per plant. Coupling phase linkage was observed for days-to-flower initiation whereas repulsion phase linkage was observed for daysto-maturity and 1,000-seed weight.  相似文献   

9.
In the present study, the effect of arsenate (AsV) exposure either alone or in combination with calcium (Ca) was investigated in callus cultures of Brassica juncea (L.) Czern. cv. Pusa Bold grown for a period up to 24 h. The AsV?(250 μM) + Ca (10 mM) treatment resulted in a significantly higher level of As (464 μg g?1 dry weight (DW)) than AsV without Ca (167 μg g?1 DW) treatment at 24 h. Furthermore, AsV + Ca-treated calli had a higher percent of AsIII (24–47%) than calli subjected to AsV treatment (12–14%). Despite this, AsV + Ca-treated calli did not show any signs of hydrogen peroxide (H2O2) accumulation or cell death upon in vivo staining, while AsV-exposed calli had increased H2O2, shrinkage of cytoplasmic contents, and cell death. Thus, AsV treatment induced oxidative stress, which in turn elicited a response of antioxidant enzymes and metabolites as compared with control and AsV + Ca treatment. The positive effects of Ca supplementation were also correlated to an increase in thiolic constituents', viz., cysteine, reduced glutathione, and glutathione reductase in AsV + Ca than in AsV treatment. An analysis of selected signaling related genes, e.g., mitogen-activated protein kinases (MAPK3 and MAPK6) and jasmonate ZIM-domain (JAZ3) suggested that AsV and AsV + Ca followed variable pathways to sense and signal the As stress. In AsV-alone treatment, jasmonate signaling was seemingly activated, while MAPK3 was not involved. In contrast, AsV + Ca treatment appeared to specifically inhibit jasmonate signaling and activate MAPK3. In conclusion, Ca supplementation may hold promise for achieving increased As accumulation in plants without compromising their tolerance.  相似文献   

10.
Development of a designer oilseed crop with improved yield attributes and enhanced nutritional quality for the benefits of mankind and animal husbandry is now achievable with the combination of genetic engineering and plant breeding. In spite of their immense importance, the fatty acid profiles of most oilseed crops are imbalanced that necessitate the use of metabolic engineering strategies to overcome the various shortfalls in order to improve the nutritional quality of these edible oils. Indian mustard (Brassica juncea L.), being one of the important oilseed crops in Indian subcontinent naturally contains ~50 % nutritionally undesirable very long chain unsaturated fatty acids (VLCUFAs), e.g. erucic acid (C22:1). For the purpose of nutritional improvement of B. juncea seed oil, several metabolic engineering strategies have been employed to divert the carbon flux from the production of VLCUFAs to other important fatty acids. Stearic acid, being a saturated but nutritionally neutral fatty acid, is naturally inadequate in most of the conventional oil seeds. Due to its neutral effect on consumer’s health and as an important industrial ingredient, increased in planta production of stearic acid in the seed oil not only helps in reduction of production cost but also lessens the trans fatty acid production during commercial hydrogenation process. In this review metabolic engineering strategies to minimize the VLCUFAs along with increased production of stearic acid in the seed oil of B. juncea are discussed, so that further breeding attempts can be made to improve the nutritionally desirable fatty acid profile in the suitable cultivars of this important oilseed crop.  相似文献   

11.
D. Kumar 《Plant and Soil》1984,79(2):261-272
In a micro-plot study of 6 cultivars of Indian mustard (Brassica juncea L.) it was observed that germination of seeds and seed yield per plot decreased linearly with rising salinity levels. On the contrary, seed yield per plant increased with the salinity until at a critical salinity level it fell abruptly. Compared to the cultivars of the sensitive group the tolerant ones exhibited a higher magnitude of reduction in number of leaf stomata per unit area (stomatal frequency of leaf) at the critical salinities (12 mmhos/cm and above) of irrigation water, whereas the decrease in leaf water potential (-leaf) was not so marked at the same salinity levels. Tolerant cultivars were also notable for having a wider K/Na ratio (1.63 and 1.28) and a higher accumulation of free proline (2.10 and 2.30 mole/g) at EC irrigation water of 12 and 16 mmhos/cm respectively. Reductions in yield at these salinities were rather lower being 27.0 and 79.8% respectively in tolerant cultivars compared with 59.0 and 94.2% respectively in sensitive ones.  相似文献   

12.
卡那霉素在转基因芥菜中的应用   总被引:4,自引:1,他引:4  
赵爽  雷建军  陈国菊  曹必好 《遗传》2008,30(4):501-507
为了找出芥菜 (Brassica juncea Coss.) 遗传转化中最佳的卡那霉素(Kan)筛选浓度, 将芥菜的子叶接种于含有不同浓度Kan的分化培养基中, 当Kan浓度达到 30 mg/L时, 外植体的分化完全受到抑制。将芥菜种子播种于含有不同浓度Kan的培养基中, 当Kan浓度达到200 mg/L时, 长出的幼苗完全白化; 利用叶片涂抹方法, 将不同浓度的Kan涂抹于田间生长的植株叶片上, 当Kan浓度达到200 mg/L时, 被处理的叶片完全变白。为了对转基因芥菜后代中外源基因的分离情况进行遗传学分析, 分别用200 mg/L的Kan处理以npt-Ⅱ基因为选择标记基因的转基因芥菜的种子和转基因芥菜后代植株的叶片, 利用χ2测验分析试验结果, 4个含有单拷贝外源基因的转基因株系后代, 对Kan的抗感分离都符合3︰1的分离规律; 而2个含有双拷贝外源基因的转基因株系, 其中一个对Kan的抗感分离符合3︰1而不符合15︰1, 另一个对Kan的抗感分离既符合3︰1也符合 15︰1, 双拷贝外源基因在转基因芥菜中的整合方式有待进一步的研究。最后, 用PCR分析证实了该方法的准确性, 因此, 利用Kan对转基因芥菜后代进行筛选是可行的。  相似文献   

13.
Salt stress is one of the most important abiotic stress factors affecting plant growth and productivity in natural ecosystems. In this study, we aimed at determining possible differences between salt tolerant and salt sensitive species in early (within 72 h) salt stress response in leaves and roots. To this purpose, we subjected three Brassicaceae species, namely two halophytes—Cakile maritima and Thellungiella salsuginea—and a glycophyte—Arabidopsis thaliana— to short-term salt stress (400 mM NaCl). The results indicate that the halophytes showed a differential osmotic and ionic response together with an early and transient oxidative burst, which was characterized by enhanced hydrogen peroxide levels and subsequent activation of antioxidant defenses in both leaves and roots. In addition, the halophytes displayed enhanced accumulation of abscisic acid, jasmonic acid (JA) and ACC (aminocyclopropane-1-carboxylic acid, the precursor of ethylene) in leaves and roots, as compared to A. thaliana under salt stress. Moreover, the halophytes showed enhanced expression of ethylene response factor1 (ERF1), the convergence node of the JA and ethylene signaling pathways in both leaves and roots upon exposure to salt stress. In conclusion, we show that the halophytes C. maritima and T. salsuginea experience an early oxidative burst, improved antioxidant defenses and hormonal response not only in leaves but also in roots, in comparison to the glycophyte A. thaliana. This differential signaling response converging, at least in part, into increased ERF1 expression in both above- and underground tissues seems to underlay, at least in part, the enhanced tolerance of the two studied halophytes to salt stress.  相似文献   

14.
Summary The relative ability of cross- and self-pollen to achieve fertilisation in Brassica was studied by making double pollinations using cross-pollen carrying a dominant seedling marker gene. With simultaneous self- and crosspollination 12–40% self-seed was set, but when cross-pollen was applied to the stigma four hours before self-pollen, only 2–4% self-seed was obtained. In two plants to which cross-pollen was applied at various time intervals after self-pollen there was a tendency for the percentage of self-seed to increase as the time interval increased. In a third plant this trend was not apparent, probably because of a greater degree of self-incompatibility. The competitive advantage of the first pollen to arrive on the stigma is discussed in relation to the strength of the self-incompatibility and the sib problem in F1 hybrid brassicas.  相似文献   

15.
Cellular changes in the roots of mustard (Brassica juncea L.) grown in soil treated with 1.09, 1.46 and 1.83 mg benzoic acid per g soil, a known allelochemical, were analyzed after 7 days. The recoverable concentration of 1.09, 1.46 and 1.8 mg benzoic acid per g soil (measured by high performance liquid chromatography) was 68, 150 and 250 microg benzoic acid per g soil, respectively. The benzoic acid treatments suppressed root growth by 30.5%, 58.8% and 81.1% with increasing concentrations. Transmission electron microscopy studies of roots showed irregular shaped cells arranged in disorganized manner and disruption of cell organelles at cellular level. Root cells showed dissolution of middle lamella (at 68 and 150 microg benzoic acid per g soil) but intact middle lamella with increased wall deposits was observed with 250 microg benzoic acid per g soil. Damage to the mustard root at cellular level was evidenced by changes in cell morphology and internal organization.  相似文献   

16.
An AFLP linkage map of Brassica juncea (L.) Czern and Coss was constructed using 88 recombinant inbred lines (RILs) from a cross between an Indian cultivar ‘Varuna’ and an accession from Poland ‘BEC-144’. The map included 91 AFLP markers organized on 19 linkage groups covering a total map distance of 1679.1 cM. A total of 14 QTLs were detected for oil content (2 QTLs), erucic acid (2 QTLs), eicosenoic acid (2 QTLs), linolenic acid (3 QTLs), linoleic acid (3 QTLs) and palmitic acid (2 QTLs). A specific genomic region on LG2 was associated with contents of three fatty acids: erucic acid, eicosenoic acid and linoleic acid. Some of the markers showed absolute linkage with the QTLs associated with the levels of linolenic acid, linoleic acid and oil content. These markers may be used for improvement of fatty acid profile of B. juncea.  相似文献   

17.
The presence of Cadmium (Cd) in the agricultural soils affects horticultural cultivars and constrains the crop productivity. A pot experiment was performed using five cultivars of mustard (Brassica juncea L.) to evaluate the difference in their response to Cd toxicity under greenhouse conditions. The pots containing reconstituted soil were supplied with different concentration of CdCl2 (0, 25, 50, 100 or 150 mg Cd kg−1 soil). Increasing concentration of Cd in the soil resulted in decreased growth, photosynthesis and yield. Maximum significant reduction in growth, photosynthesis and yield were observed with 150 mg Cd kg−1 soil in all the cultivars. Our results indicate that the cultivar Alankar is found to be more tolerant to Cd stress, recording higher plant dry mass, net photosynthesis rate, associated with high antioxidant activity and low Cd content in the plant leaves and thus less oxidative damage. Cultivar RH30 experienced maximum damage in terms of reduction in growth, photosynthesis, yield characteristics and oxidative damage and emerged as sensitive cultivar. The data of tolerance index of Alankar were found to be higher among all tested mustard cultivars which indicate its higher tolerance to Cd. Better coordination of antioxidants protected Alankar from Cd toxicity, whereas lesser antioxidant activity in RH30 resulted in maximum damage. Cultivars of mustard were ranked with respect to their tolerance to Cd: Alankar > Varuna > Pusa Bold > Sakha > RH30, respectively.Key words: antioxidants, cadmium, growth, mustard cultivars, photosynthesis, stress, yield  相似文献   

18.
A RFLP-based linkage map of mustard [Brassica juncea (L.) Czern. and Coss.]   总被引:2,自引:0,他引:2  
 A genetic linkage map of Brassica juncea was constructed based on restriction fragment length polymorphism (RFLP) detected by anonymous cDNA markers from B. napus, using a segregating F1-derived doubled haploid (DH) progeny from a cross between a canola-quality mustard line (J90-4317) and a high-oil-content mustard line (J90-2733). The RFLP probes consisted of 229 cDNA probes from B. napus and a B. napus tandem repeat sequence, RDA2. The map consisted of 343 marker loci arranged in 18 major linkage groups plus five small segments with two to five marker loci, covering a total map distance of 2073 cM. Twenty-four percent of the markers were dominant in nature. Sixty-two percent of the marker loci were duplicated, and the majority were involved in inter-linkage group duplications, illustrating that complex duplications and subsequent rearrangements occurred after allopolyploidy. Deviation from the Mendelian segregation ratio for a DH population was observed for 27% of the markers. Two-thirds of these markers with a skewed segregation were clustered in 6 linkage groups and two unassigned segments. The overall average marker interval of the B. juncea map reported here was 6.6 cM, which would provide a marker density satisfactory for efficient use of the map in breeding applications, such as tagging of important agronomic traits and marker-assisted selection. Received: 14 May 1996 / Accepted: 11 October 1996  相似文献   

19.
Abstract

A pot experiment was carried out to evaluate the effect of Pseudomonas fluorescens and Trichoderma harzianum inoculation on the uptake of zinc (Zn) and cadmium (Cd) by Indian mustard (Brassica juncea) from the soil having three different concentrations of Zn (300, 600, 900 mg/kg) and Cd (5, 10, 15 mg/kg) separately. Microbial inoculation resulted in significantly better plant growth, available metal content and their uptake than control (without microbes). Available Zn was enhanced, ca.1.6- and 1.4-fold and Cd ca. 2.5- and 1.8-fold, by P. fluorescens and T. harzianum, respectively. P. fluorescens resulted in an increase in Zn uptake by 113.9, 51.9 and 58.4% and T. harzianum by 42.6, 32.1 and 33.9% over control from soils having 300, 600 and 900 mg Zn, respectively, while of the corresponding results for Cd were 110.2, 48.9 and 58.1% with P. fluorescens and 42.6, 30.9 and 33.4% with T. harzianum from soil having 5, 10 and 15 mg Cd, respectively, after 90 days of treatment. In general the rate of metal uptake was higher during the initial 30 days and declined later.  相似文献   

20.
Salinity is a widespread environmental stress for crop plants. It is common in arid, semiarid, and coast regions. In those environments, seawater infiltrations can occur or the sea provides the only source of water for irrigation. The effects of 10% and 20% seawater in nutrient solutions were studied in 30 day-old plants of sunflower (Helianthus annuus L.) ecotype Katharina Piacenza. Growth parameters, ascorbate and glutathione contents, and the activities of ascorbate peroxidase and glutathione reductase were determined in shoots and roots. The results showed antioxidative responses of the ecotype to both salt treatments. The different activity patterns of antioxidant molecules and enzymes in the leaves and roots suggested a different kind of reaction to the two seawater concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号