首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The activities of the enzymes nitrate reductase (EC 1.6.6.1), nitrite reductase (EC 1.6.6.4), glutamine synthetase (EC 6.3.1.2), glutamate synthase (GOGAT; EC 1.4.7.1), glutamate-oxaloacetate aminotransferase (EC 2.6.1.1), and glutamate dehydrogenase (EC 1.4.1.2) were compared in light-grown green or etiolated leaves of rye seedlings ( Secale cereale L. cv. Halo) raised at 22°C, and in the bleached 70S ribosome-deficient leaves of rye seedlings grown at a non-permissive high temperature of 32°C. Under normal permissive growth conditions the activities of most of the enzymes were higher in light-grown, than in dark-grown, leaves. All enzyme activities assayed were also observed in the heat-treated 70S ribosome-deficient leaves. Glutamine synthetase, glutamate synthase, and glutamate-oxaloacetate aminotransferase occurred in purified ribosome-deficient plastids separated on sucrose gradients. For glutamate-oxaloacetate aminotransferase four multiple forms were separated by polyacrylamide gel electrophoresis from leaf extracts. The chloroplastic form of this enzyme was also present in 70S ribosome-deficient leaves. It is concluded that the chloroplast-localized enzymes nitrite reductase, glutamine synthetase, glutamate synthase and glutamate-oxaloacetate aminotransferase, or their chloroplast-specific isoenzyme forms, are synthesized on cytoplasmic 80S ribosomes.  相似文献   

2.
R. Höinghaus  J. Feierabend 《Planta》1985,166(4):452-465
To determine the sites of synthesis of chloroplast-envelope proteins, we have analysed several enzyme and translocator functions ascribed to the envelope membranes, and investigated the envelope polypeptide composition of plastids isolated from 70S ribosome-deficient leaves of rye (Secale cereale L.) generated by growing the plants at a temperature of 32°C. Since the ribosomedeficient plastids are also achlorophyllous in light-grown leaves, not only were chloroplasts from mature, green leaves used for comparison, but also those from yellowing, aged leaves as well as etioplasts from dark-grown leaves raised at a temperature of 22° C. A majority of the plastidenvelope polypeptides appeared to be of cytoplasmic origin. The envelopes of ribosome-deficient plastids possessed ATPase (EC 3.6.1.3) activity; this was not, however, dependent on divalent cations, in contrast to the Mn2+- or Mg2+-dependent ATPase which is associated with chloroplast envelopes. Adenylate kinase (EC 2.7.4.3) was present in the stromal fraction of ribosome-deficient plastids and the stromal form of this enzyme is, therefore, of cytoplasmic origin. In contrast to previous findings, adenylate kinase was not, however, specifically associated with the chloroplast-envelope membranes, either in rye or in spinach. Measurements of the uptake of l-[14C]-malate into ribosome-deficient plastids indicated the presence and cytoplasmic origin of the dicarboxylate translocator. Malate uptake into rye etioplasts was, however, low. The phosphate translocator was assayed by the uptake of 3-phospho-[14C]glycerate. While rapid 3-phosphoglycerate uptake was observed for rye chloroplasts and etioplasts, it was hardly detectable for ribosome-deficient, plastids and rather low for chloroplasts from aged leaves. A polypeptide of M r approx. 30000 ascribed to the phosphate translocator was greatly reduced in the envelope patterns of ribosome-deficient plastids and of chloroplasts from aged leaves.  相似文献   

3.
A procedure for the simultaneous purification to homogeneity of hexokinase, phosphoglucomutase 1 and 2, aldolase, phosphoglucose isomerase and glucose-6-phosphate dehydrogenase from human origin has been developed. Human placenta homogenate was first chromatographed on DE-52 column which retains hexokinase and glucose-6-phosphate dehydrogenase while the other enzymes are recovered in the unabsorbed protein fraction. The other steps in the purification involve Matrex gel and specific affinity chromatography for the DE-52 retained enzymes and phosphocellulose and Matrex gel chromatography for the other enzymes. All the enzymes mentioned were obtained in one week, with recoveries from 14 percent for glucose-6-phosphate dehydrogenase to 75 percent for hexokinase. Thus, the procedures utilized seem to be useful in obtaining large amounts of enzymes in a a homogeneous form from an easily available human tissue.  相似文献   

4.
ABSTRACT. The presence of 14 enzymes was investigated using purified spores of the microsporidian Nosema grylli from fat body of the crickets Gryllus bimaculatus . Glucose 6-phosphate dehydrogenase (EC 1.1.1.49), phosphoglucomutase (EC 5.4.2.2), phosphoglucose isomerase (EC 5.3.1.9), fructose 6-phosphate kinase (EC 2.7.1.11), aldolase (EC 4.1.2.13), 3-phosophoglycerate kinase (EC 2.7.2.3), pyruvate kinase (EC 2.7.1.40) and glycerol 3-phosphate dehydrogenase (EC 1.1.1.8) were detected with activities of 15 ± 1, 7 ± 1, 1,549 ± 255, 10 ± 1, 5 ± 1, 16 ± 4, 6 ± 1 and 16 ± 2 nmol/min. mg protein, respectively. Hexokinase (EC 2.7.1.1), NAD-dependent malate dehydrogenase (EC 1.1.1.37), malic enzyme (EC 1.1.1.40), lactate dehydrogenase (EC 1.1.1.27), alcohol dehydrogenase (EC 1.1.1.1) and succinate dehydrogenase (EC 1.3.99.1) were not detectable. These results suggest the catabolism of carbohydrates in microsporidia occurs via the Embden-Meyerhof pathway. Glycerol 3-phosphate dehydrogenase may reoxidize NADH which is produced by glyceraldehyde 3-phosphate dehydrogenase in glycolysis.  相似文献   

5.
The maximum extractable activities of twenty-one photosynthetic and glycolytic enzymes were measured in mature leaves of Mesembryanthemum crystallinum plants, grown under a 12 h light 12 h dark photoperiod, exhibiting photosynthetic characteristics of either a C3 or a Crassulacean acid metabolism (CAM) plant. Following the change from C3 photosynthesis to CAM in response to an increase in the salinity of in the rooting medium from 100 mM to 400 mM NaCl, the activity of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) increased about 45-fold and the activities of NADP malic enzyme (EC 1.1.1.40) and NAD malic enzyme (EC 1.1.1.38) increased about 4- to 10-fold. Pyruvate, Pi dikinase (EC 2.7.9.1) was not detected in the non-CAM tissue but was present in the CAM tissue; PEP carboxykinase (EC 4.1.1.32) was detected in neither tissue. The induction of CAM was also accompanied by large increases in the activities of the glycolytic enzymes enolase (EC 4.2.1.11), phosphoglyceromutase (EC 2.7.5.3), phosphoglycerate kinase (EC 2.7.2.3), NAD glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and glucosephosphate isomerase (EC 2.6.1.2). There were 1.5- to 2-fold increases in the activities of NAD malate dehydrogenase (EC 1.1.1.37), alanine and aspartate aminotransferases (EC 2.6.1.2 and 2.6.1.1 respectively) and NADP glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). The activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphatase (EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), hexokinase (EC 2.7.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) remained relatively constant. NADP malate dehydrogenase (EC 1.1.1.82) activity exhibited two pH optima in the non-CAM tissue, one at pH 6.0 and a second at pH 8.0. The activity at pH 8.0 increased as CAM was induced. With the exceptions of hexokinase and glucose-6-phosphate dehydrogenase, the activities of all enzymes examined in extracts from M. crystallinum exhibiting CAM were equal to, or greater than, those required to sustain the maximum rates of carbon flow during acidification and deacidification observed in vivo. There was no day-night variation in the maximum extractable activities of phosphoenolpyruvate carboxylase, NADP malic enzyme, NAD malic enzyme, fructose-1,6-bisphosphatase and NADP malate dehydrogenase in leaves of M. crystallinum undergoing CAM.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

6.
In the leaves of rye seedlings (Secale cereale L.) grown at an elevated temperature of 32°C the formation of plastidic 70S ribosomes is specifically prevented. The resulting plastid ribosome-deficient leaves, which are chlorotic in light, represent a system for the identification of translation products of the 80S ribosomes among the chloroplastic proteins. Searching for the primary heat-sensitive event causing the 70S ribosome-deficiency, the thermostability of the chloroplastic capacity for RNA synthesis was investigated. The RNA polymerase activity of isolated normal chloroplasts from 22°-grown rye leaves was not inactivated in vitro at temperatures between 30° and 40°C. The ribosome-deficient plastids purified from bleached 32°-grown leaf parts contained significant RNA polymerase activity which was, however, lower than in functional chloroplasts. After application of [3H]uridine to intact leaf tissues [3H]uridine incorporation was found in ribosome-deficient plastids of 32°C-grown leaves. The amount of incorporation was similar to that in the control chloroplasts from 22°C-grown leaves. According to these results, it is unlikely that the non-permissive temperature (32°C) causes a general inactivation of the chloroplastic RNA synthesis in rye leaves.  相似文献   

7.
Two isoenzymes each of glucosephosphate isomerase (EC 5.3.1.9), phosphoglucomutase (EC 2.7.5.1), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.43) were separated by (NH4)2SO4 gradient solubilization and DEAE-cellulose ion-exchange chromatography from green leaves of the C3-plants spinach (Spinacia oleracea L.), tobacco (Nicotiana tabacum L.) and wheat (Triticum aestivum L.), of the Crassulacean-acid-metabolism plants Crassula lycopodioides Lam., Bryophyllum calycinum Salisb. and Sedum rubrotinctum R.T. Clausen, and from the green algae Chlorella vulgaris and Chlamydomonas reinhardii. After isolation of cell organelles from spinach leaves by isopyenic centrifugation in sucrose gradients one of two isoenzymes of each of the four enzymes was found to be associated with whole chloroplasts while the other was restricted to the soluble cell fraction, implying the same intracellular distribution of these isoenzymes also in the other species.Among C4-plants, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were found in only one form in corn (Zea mays L.), sugar cane (Saccharum officinarum L.) and Coix lacrymajobi L., but as two isoenzymes in Atriplex spongiosa L. and Portulaca oleracea L. In corn, the two dehydrogenases were mainly associated with isolated mesophyll protoplasts while in Atriplex spongiosa they were of similar specific activity in both mesophyll protoplasts and bundle-sheath strands. In all five C4-plants three isoenzymes of glucosephosphate isomerase and phosphoglucomutase were found. In corn two were localized in the bundle-sheath strands and the third one in the mesophyll protoplasts. The amount of activity of the enzymes was similar in each of the two cell fractions. Apparently, C4 plants have isoenzymes not only in two cell compartments, but also in physiologically closely linked cell types such as mesophyll and bundle-sheath cells. New address: Institut für Pflanzenphyiologie und Zellbiologie, Freie Universität Berlin, Königin-Luise-Straße 12-16a, D-1000 Berlin 33  相似文献   

8.
9.
Pathway of starch breakdown in photosynthetic tissues of Pisum sativum.   总被引:17,自引:0,他引:17  
1. The aim of this work was to discover the pathway of starch breakdown in the photosynthetic tissues of Pisum sativum. 2. Measurements of the starch in the leaves of plants grown in photoperiods of 12 or 18 h showed that starch, synthesized in the light, was rapidly metabolized in the dark at rates of 0.04--0.06 mumol glucose/min per g fresh weight. 3. The maximum catalytic activities of alpha-amylase, beta-amylase, hexokinase, alpha-glucan phosphorylase and phosphoglucomutase in extracts of leaves showed no diurnal variation in either photoperiod, and exceeded estimates of the rate of net starch breakdown in the dark. 4. Studies with intact chloroplasts, isolated from young shoots and from leaves, indicated that pea chloroplasts do not contain significant activities of alpha-amylase, beta-amylase and hexokinase, although some of the latter may be attached to the outside of the chloroplast envelope. These studies also showed that pea chloroplasts contained sufficient alpha-glucan phosphorylase and phosphoglucomutase to mediate the observed rates of starch breakdown. 5. It is proposed that starch breakdown in pea chloroplasts is phosphorolytic.  相似文献   

10.
The effect of disruption procedure on the subcellular distribution and the activities of 11 enzymes catalyzing the glycolytic pathway in Trypanosoma brucei has been studied. The activities of the enzymes varied with the lytic procedure used. Maximum specific enzyme activity values were obtained after treatment with saponin whereas digitonin treatment gave the lowest results. The intracellular location of the enzymes was examined by means of differential centrifugation following cell lysis with saponin, Triton X-100, digitonin, or by freezing and thawing. Irrespective of the method of cell lysis employed, the six enzymes, hexokinase, phosphofructokinase, aldolase, phosphoglycerate kinase, glycerol phosphate dehydrogenase, and glycerokinase, were particulate. Of the remaining 5 enzymes, digitonin liberates only phosphoglycerate mutase (partially); saponin or Triton X-100 liberates phosphoglucose isomerase, phosphoglycerate mutase, enolase, and pyruvate kinase but not glyceraldehyde 3-phosphate dehydrogenase; freezing and thawing acts like saponin or Triton X-100 except that it fails to liberate phosphoglucose isomerase, while cell grinding with silicon carbide liberates only glyceraldehyde phosphate dehydrogenase (partially), phosphoglycerate mutase, enolase, and pyruvate kinase. The relative maximal activities of the enzymes suggest that the rate-limiting steps in glycolysis in T. brucei are the reactions catalyzed by aldolase and phosphoglycerate mutase.  相似文献   

11.
The specific activities of each of the enzymes of the classical pentose phosphate pathway have been determined in both cultured procyclic and bloodstream forms of Trypanosoma brucei. Both forms contained glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconolactonase (EC 3.1.1.31), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), ribose-5-phosphate isomerase (EC 5.3.1.6) and transaldolase (EC 2.2.1.2). However, ribulose-5-phosphate 3'-epimerase (EC 5.1.3.1) and transketolase (EC 2.2.1.1) activities were detectable only in procyclic forms. These results clearly demonstrate that both forms of T. brucei can metabolize glucose via the oxidative segment of the classical pentose phosphate pathway in order to produce D-ribose-5-phosphate for the synthesis of nucleic acids and reduced NADP for other synthetic reactions. However, only procyclic forms are capable of using the non-oxidative segment of the classical pentose phosphate pathway to cycle carbon between pentose and hexose phosphates in order to produce D-glyceraldehyde 3-phosphate as a net product of the pathway. Both forms lack the key gluconeogenic enzyme, fructose-bisphosphatase (EC 3.1.3.11). Consequently, neither form should be able to engage in gluconeogenesis nor should procyclic forms be able to return any of the glyceraldehyde 3-phosphate produced in the pentose phosphate pathway to glucose 6-phosphate. This last specific metabolic arrangement and the restriction of all but the terminal steps of glycolysis to the glycosome may be the observations required to explain the presence of distinct cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase. These same observations also may provide the basis for explaining the presence of cytosolic hexokinase and phosphoglucose isomerase without the presence of any cytosolic phosphofructokinase activity. The key enzymes of the Entner-Doudoroff pathway, 6-phosphogluconate dehydratase (EC 4.2.1.12) and 2-keto-3-deoxy-6-phosphogluconate aldolase (EC 4.1.2.14) were not detected in either procyclic or bloodstream forms of T. brucei.  相似文献   

12.
1. Measurements were made of the non-oxidative reactions of the pentose phosphate cycle in liver (transketolase, transaldolase, ribulose 5-phosphate epimerase and ribose 5-phosphate isomerase activities) in a variety of hormonal and nutritional conditions. In addition, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were measured for comparison with the oxidative reactions of the cycle; hexokinase, glucokinase and phosphoglucose isomerase activities were also included. Starvation for 2 days caused significant lowering of activity of all the enzymes of the pentose phosphate cycle based on activity in the whole liver. Re-feeding with a high-carbohydrate diet restored all the enzyme activities to the range of the control values with the exception of that of glucose 6-phosphate dehydrogenase, which showed the well-known ;overshoot' effect. Re-feeding with a high-fat diet also restored the activities of all the enzymes of the pentose phosphate cycle and of hexokinase; glucokinase activity alone remained unchanged. Expressed as units/g. of liver or units/mg. of protein hexokinase, glucose 6-phosphate dehydrogenase, transketolase and pentose phosphate isomerase activities were unchanged by starvation; both 6-phosphogluconate dehydrogenase and ribulose 5-phosphate epimerase activities decreased faster than the liver weight or protein content. 2. Alloxan-diabetes resulted in a decrease of approx. 30-40% in the activities of 6-phosphogluconate dehydrogenase, ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase and transketolase; in contrast with this glucose 6-phosphate dehydrogenase, transaldolase and phosphoglucose isomerase activities were unchanged. Treatment of alloxan-diabetic rats with protamine-zinc-insulin for 3 days caused a very marked increase to above normal levels of activity in all the enzymes of the pentose phosphate pathway except ribulose 5-phosphate epimerase, which was restored to the control value. Hexokinase activity was also raised by this treatment. After 7 days treatment of alloxan-diabetic rats with protamine-zinc-insulin the enzyme activities returned towards the control values. 3. In adrenalectomized rats the two most important changes were the rise in hexokinase activity and the fall in transketolase activity; in addition, ribulose 5-phosphate epimerase activity was also decreased. These effects were reversed by cortisone treatment. In addition, in cortisone-treated adrenalectomized rats glucokinase activity was significantly lower than the control value. 4. In thyroidectomized rats both ribose 5-phosphate isomerase and transketolase activities were decreased; in contrast with this transaldolase activity did not change significantly. Hypophysectomy caused a 50% fall in transketolase activity that was partially reversed by treatment with thyroxine and almost fully reversed by treatment with growth hormone for 8 days. 5. The results are discussed in relation to the hormonal control of the non-oxidative reactions of the pentose phosphate cycle, the marked changes in transketolase activity being particularly outstanding.  相似文献   

13.
1. Measurements were made of the activities of enzymes of the pentose phosphate cycle, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase, transketolase and transaldolase, as well as of the related or competing enzymes glucokinase, hexokinase, phosphoglucose isomerase and phosphoglucomutase, in control rats and in rats bearing the growth-hormone- and prolactin-secreting pituitary tumour MtTW5, to study the effect of high endogenous concentrations of growth hormone on this pathway in liver. 2. There was a twofold increase in liver weight. Glucokinase activity/g. of liver decreased to half the control value in the experimental group, although on a total liver basis it remained unchanged. Hexokinase activity increased in parallel with the liver weight, so that the total activity was doubled in rats with a high endogenous concentration of growth hormone. No differences in response were found between heat-stable and heat-labile forms of hexokinase. 3. The activity/g. of liver of the two oxidative enzymes of the pathway decreased slightly in the experimental group, but this was offset by the increase in liver weight, and the resultant effect was a 50% increase in the total activity. 4. Of the non-oxidative enzymes of the cycle the most marked increase on a total liver basis was in ribose 5-phosphate isomerase activity, to 2.5 times the control value. Ribulose 5-phosphate epimerase activity showed the smallest increase. Transketolase and transaldolase activities were also increased. The latter is the rate-limiting enzyme of the non-oxidative reactions of the cycle in these animals. 5. The results are discussed in relation to the glycolytic pathway and synthesis of glycogen, and more particularly to the increased requirement for ribose 5-phosphate for RNA synthesis.  相似文献   

14.
1. Enzyme polymorphism, analyzed by starch gel electrophoresis, was found to be zero for acid phosphatase, phosphoglucomutase, phosphoglucose isomerase, glucose 6-phosphate dehydrogenase, lactate dehydrogenase, malate dehydrogenase and malic enzyme, in one Brazilian and two Venezuelan strains of Schistosoma mansoni. 2. All loci studied were monomorphic within strains, but the isoenzymic patterns were, however, different among the strains. 3. Results suggest a drastic loss of the genetic variability usually found in natural populations.  相似文献   

15.
The activities of insulin receptor and the enzymes hexokinase (EC 2.7.1.1) and NADP-dependent malic enzyme (EC1.1.1.40), glucose 6-phosphate dehydrogenase (EC 1.1.1.49) and isocitrate dehydrogenase (EC 1.1.1.42) were measured in rat choroid plexus in alloxan induced diabetes. A significant decrease was observed in the activities of all the enzymes except isocitrate dehydrogenase and also the choroid plexus insulin receptor activity was decreased. A reversal of the efect was observed with insulin administration to diabetic rats. It may be concluded that the enzymes of choroid plexus together with insulin receptor are directly controlled by-the concentration of insulin.  相似文献   

16.
A powerful technique is described to localize the activities of a range of enzymes in a wide variety of plant tissues. The method is based on the coupling of the enzymatic reaction to the reduction of NAD and subsequent reduction and precipitation of nitroblue tetrazolium. Enzymes that did not reduce NAD could be visualized by coupling their activities to glucose-6-phosphate dehydrogenase activity via one or more intermediary 'coupling' enzymes. The method is shown to be applicable for the detection of the activities of hexokinase, fructokinase, sucrose synthase, uridine 5'-diphospho-glucose pyrophosphorylase, ADP-glucose pyrophosphorylase, phosphoglucomutase, and phosphoglucose isomerase. It could be used for all tissues tested, including green leaves, stems, roots, fruits, and seeds. The method is specific, very sensitive, and has a high spatial resolution, giving information at the cellular and the subcellular level. The localization of sucrose synthase, invertase, and uridine 5'-diphospho-glucose pyrophosphorylase in transgenic potato plants, carrying a cytokinin biosynthesis gene, is studied and compared with wild-type plants.  相似文献   

17.
The presence of the glycolytic enzymes from hexokinase to pyruvate kinase in plastids of seedling pea (Pisum sativum L.) roots was investigated. The recoveries, latencies and specific activities of each enzyme in different fractions was compared with those of organelle marker enzymes. Tryptic-digestion experiments were performed on each enzyme to determine whether activities were bound within membranes. The results indicate that hexokinase (EC 2.7.1.2) and phosphoglyceromutase (EC 5.4.2.1) are absent from pea root plastids. The possible function of the remaining enzymes is considered.Abbreviations GADPH glyceraldehyde 3-phosphate dehydrogenase - PFK phosphofructokinase - PFP pyrophosphate: fructose 6-phosphate 1-phosphotransferase Bronwen A. Trimming gratefully acknowledges the award of a studentship from the Science and Engineering Research Council  相似文献   

18.
Mechanisms restricting the accumulation of chloroplast glycolipids in achlorophyllous etiolated or heat-treated 70S ribosome-deficient rye leaves (Secale cereale L. cv “Halo”) and thereby coupling glycolipid formation to the availability of chlorophyll, were investigated by comparing [14C]acetate incorporation by leaf segments of different age and subsequent chase experiments. In green leaves [14C]acetate incorporation into all major glycerolipids increased with age. In etiolated leaves glycerolipid synthesis developed much more slowly. In light-grown, heat-bleached leaves [14C]acetate incorporation into glycolipids was high at the youngest stage but declined with age. In green leaves [14C]acetate incorporation into unesterified fatty acids and all major glycerolipids was immediately and strongly diminished after application of an inhibitor of chlorophyll synthesis, 4,6-dioxoheptanoic acid. The turnover of glyco- or phospholipids did not differ markedly in green, etiolated, or heat-bleached leaves. The total capacity of isolated ribosome-deficient plastids for fatty acid synthesis was not much lower than that of isolated chloroplasts. However, the main products synthesized from [14C]acetate by chloroplasts were unesterified fatty acids, phosphatidic acid, and diacylglycerol, while those produced by ribosome-deficient plastids were unesterified fatty acids, phosphatidic acid, and phosphatidylglycerol. Isolated heat-bleached plastids exhibited a strikingly lower galactosyltransferase activity than chloroplasts, suggesting that this reaction was rate-limiting, and lacked phosphatidate phosphatase activity.  相似文献   

19.
Plastids from roots of barley (Hordeum vulgare L.) seedlings were isolated by discontinuous Percoll-gradient centrifugation. Coinciding with the peak of nitrite reductase (NiR; EC 1.7.7.1, a marker enzyme for plastids) in the gradients was a peak of a glucose-6-phosphate (Glc6P) and NADP+-linked nitrite-reductase system. High activities of phosphohexose isomerase (EC 5.3.1.9) and phosphoglucomutase (EC 2.7.5.1) as well as glucose-6-phosphate dehydrogenase (Glc6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) were also present in the isolated plastids. Thus, the plastids contained an overall electron-transport system from NADPH coupled with Glc6PDH and 6PGDH to nitrite, from which ammonium is formed stoichiometrically. However, NADPH alone did not serve as an electron donor for nitrite reduction, although NADPH with Glc6P added was effective. Benzyl and methyl viologens were enzymatically reduced by plastid extract in the presence of Glc6P+ NADP+. When the plastids were incubated with dithionite, nitrite reduction took place, and ammonium was formed stoichiometrically. The results indicate that both an electron carrier and a diaphorase having ferredoxin-NADP+ reductase activity are involved in the electron-transport system of root plastids from NADPH, coupled with Glc6PDH and 6PGDH, to nitrite.Abbreviations Cyt cytochrome - Glc6P glucose-6-phosphate - Glc6PDH glucose-6-phosphate dehydrogenase - MVH reduced methyl viologen - NiR nitrite reductase - 6PG 6-phosphogluconate - 6PGDH 6-phosphogluconate dehydrogenase  相似文献   

20.
An enzyme analysis of the liver fluke, Clonorchis sinensis from Kimhae, Korea and from Shenyang, China was conducted using a horizontal starch gel electrophoresis in order to elucidate their genetic relationships. A total of eight enzymes was employed from two different kinds of buffer systems. Two loci from each enzyme of aconitase and esterase (alpha-Na and beta-Na); and only one locus each from six enzymes, glucose-6-phosphate dehydrogenase (G6PD), alpha-glycerophosphate dehydrogenase (GPD), 3-hydroxybutyrate dehydrogenase (HBDH), malate dehydrogenase (MDH), phosphoglucose isomerase (PGI), and phosphoglucomutase (PGM) were detected. Most of loci in two populations of C. sinensis showed homozygous monomorphic banding patterns and one of them, GPD was specific as genetic markers between two different populations. However, esterase (alpha-Na), GPD, HBDH and PGI loci showed polymorphic banding patterns. Two populations of C. sinensis were more closely clustered within the range of genetic identity value of 0.998-1.0. In summarizing the above results, two populations of C. sinensis employed in this study showed mostly monomorphic enzyme protein banding patterns, and genetic differences specific between two populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号