首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerium (Ce), a rare earth element, has been postulated to play a role in the pathogenesis of tropical endomyocardial fibrosis (EMF). Investigations carried out recently in pursuance of the postulation furnished histological evidence of EMF and increased cardiac collagen content in rats on prolonged administration of Ce. The present study was undertaken to understand the molecular basis of myocardial injury and fibrosis produced by the element. This article presents evidence of increased lipid peroxidation and elevated rates of fibroblast proliferation and collagen deposition in the heart in Ce-treated rats. It is suggested that the element may trigger a wound-healing response in the cardiac tissue leading to cardiac fibrosis.  相似文献   

2.
Monkey arterial smooth muscle cells (SMC) which are stimulated to proliferate in the presence of 5% monkey blood serum (MBS) and which remain quiescent in 5% monkey platelet-poor plasma serum (MPPPS) were examined for their ability to synthesize collagen in each of these conditions in culture. Collagen synthesis was measured by determining amounts of newly formed labeled hydroxyproline, following labelling in the presence of [3H]proline and ascorbic acid. Ascorbate requirements of SMC were examined to assure maximal hydroxylation. SMC synthesize the same amount of collagen/cell in 5% whole blood serum (MBS) during the early phase of rapid proliferation as during slow growth in later phases in culture. SMC grown in the presence of serum-lacking platelet factors synthesize 60–90% less collagen and 60–90% less non-collagen protein (per cell or per mg protein) than cells grown in MBS. Non-collagen protein synthesis was measured as incorporation of both [3H]proline and of [3H]leucine, determined as trichloroacetic acid (TCA)-precipitable material. Previous studies indicate that a factor derived from platelets is the principal mitogen present in whole blood serum for diploid cells such as SMC and fibroblasts in culture. Similarly derived factors are potent stimulators of both collagen and non-collagen protein synthesis by SMC. SMC, quiescent in medium lacking platelet derived material (MPPPS), is being used to investigate factors important in SMC proliferation since this is a significant event in atherogenesis in vivo. An increased deposition of collagen also occurs during atherogenesis. Consequently it will be useful to employ similar cultures of quiescent SMC to examine agents which affect production of this connective tissue matrix protein.  相似文献   

3.
Excessive production of reactive oxygen species (ROS) and P2X7R activation induced by high glucose increases NLRP3 inflammasome activation, which contributes to the pathogenesis of diabetic cardiomyopathy. Although H3 relaxin has been shown to inhibit cardiac fibrosis induced by isoproterenol, the mechanism has not been well studied. Here, we demonstrated that high glucose (HG) induced the collagen synthesis by activation of the NLRP3 inflammasome, leading to caspase‐1 activation, interleukin‐1β (IL‐1β) and IL‐18 secretion in neonatal rat cardiac fibroblasts. Moreover, we used a high‐glucose model with neonatal rat cardiac fibroblasts and showed that the activation of ROS and P2X7R was augmented and that ROS‐ and P2X7R‐mediated NLRP3 inflammasome activation was critical for the collagen synthesis. Inhibition of ROS and P2X7R decreased NLRP3 inflammasome‐mediated collagen synthesis, similar to the effects of H3 relaxin. Furthermore, H3 relaxin reduced the collagen synthesis via ROS‐ and P2X7R‐mediated NLRP3 inflammasome activation in response to HG. These results provide a mechanism by which H3 relaxin alleviates NLRP3 inflammasome‐mediated collagen synthesis through the inhibition of ROS and P2X7R under HG conditions and suggest that H3 relaxin represents a potential drug for alleviating cardiac fibrosis in diabetic cardiomyopathy.  相似文献   

4.
The collagen content and the rate of collagen synthesis were measured in the anterior and posterior latissimus dorsi muscles and in heart from fully grown fowl. This was done by measuring the proline/hydroxyproline ratios in the muscle and by a constant infusion of [14C]proline. These measurements were also made during the hypertrophy of the anterior muscle in response to the attachment of a weight to one wing of the fowl. In the non-growing muscles the collagen content was higher in the anterior muscle (22.8% of total protein) than in the posterior muscle (9.5% of total protein) and lowest in the heart (3.8% of total protein). In the two skeletal muscles a little over half of the collagen was accounted for by internal collagen (i.e. perimysium and endomysium). Collagen synthesis in these non-growing muscles occurred at 0.59%/day in each of the two skeletal muscles and at 0.88%/day in the cardiac muscle. During hypertrophy the collagen content of the anterior muscle increased, but not as fast as intracellular protein, so that after 58 days the concentration had fallen from 22.8 to 14.4% of total protein. This may have resulted from an incomplete production of the epimysial sheath, since the concentration of internal collagen did not fall and as a result accounted for over 80% of the total in the enlarged muscle. Collagen synthesis increased 8-fold during the first week of the hypertrophy, but never amounted to more than 4% of the total muscle protein synthesis. When the net accumulation of collagen is compared with the increased rate of synthesis it is concluded that between 30 and 70% of the newly synthesized collagen may have been degraded.  相似文献   

5.
The capacity of lung explant cultures to synthesize collagen can be estimated by determining the content of [3H]hydroxyproline in protein following incubation with [3H]proline. The technique requires acid hydrolysis followed by quantitative separation of hydroxyproline from proline for scintillation counting and is often restricted to methods that can accommodate large samples because of relatively low specific radioactivity. A method which is useful for such samples, providing rapid separation of nonderivatized amino acids by ion-exchange HPLC, is described here. The HPLC system employs an HPX-87C cation-exchange column in 10 mm calcium acetate, pH 5.5, at 85°C. Under isocratic conditions hydroxyproline is completely resolved from proline with quantitative recovery of the 3H cpm applied to the column. Large amounts of material, equivalent to at least 150 mg wet wt of lung, can be applied without affecting resolution or recovery, and samples can be injected at intervals as short as 40 min. This method was used to study collagen biosynthesis in a model of pulmonary fibrosis induced in rabbits by the tumor-promoting agent, phorbol myristate acetate (PMA), and provides information concerning total protein synthesis as well as production of collagen. The data show a doubling in the rate of collagen production in lung explants prepared from animals treated with PMA compared with explants from control animals.  相似文献   

6.
Given that vascular endothelial cells play an important role in the modulation of vascular structure and function, we hypothesized that endocardial endothelial cells (EECs) may have a modulator role in regulating the cardiac interstitial cells. Endocardial endothelial cells were isolated from freshly collected pig hearts and cardiac fibroblasts were isolated from 3- to 4-d-old Wistar rats. Fibroblasts were cultured in the presence or absence of conditioned medium from EECs. Proliferation of cardiac fibroblasts was measured by the incorporation of [3H]-Thymidine and collagen synthesis was assayed by the incorporation of [3H]-proline. To determine the involvement of signaling mediators, in separate experiments, cardiac fibroblasts were incubated with BQ123 (selective ETA receptor antagonist), PD142893 (nonselective ETA/ETB receptor antagonist), Bis-indolylmaleimide (PKC inhibitor), PD 098059 (MEK inhibitor), or neutralizing anti-transforming growth factor (TGF)-β-antibody. Endocardial endothelium-derived factors endothelin (ET)-1, TGF-β, and Angiotensin (Ang)-II in the conditioned medium were assayed by enzyme-linked immunosorbent assay using commercially available kits. We report here evidence that suggest that endocardial endothelial cells stimulate both proliferation and collagen synthesis of cardiac fibroblasts. The response seems to be mediated by endothelin through its ETA receptor. Our results also indicate that protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) pathways are essential for the EEC-induced proliferation of cardiac fibroblasts.  相似文献   

7.
We assessed the effect of streptozotocin-diabetes on in vivo collagen metabolism in skin, aorta and intestine by injecting [3H]proline into rats, 20 days after administering the diabetogen, streptozotocin. One day after [3H]proline injection, diabetic and control animals were killed, their tissues analyzed for both 3H-labeled and unlabeled hydroxyproline and results expressed per entire tissue. Thereby, the effect of diabetes on net collagen synthesis and tissue collagen mass, respectively, was evaluated.Diabetes resulted in a lower content of [3H]collagen in skin and aorta, suggesting decreased net collagen synthesis. This decrease in net synthesis was accompanied by a decrease of collagen mass in skin, whereas aortic collagen mass was unaffected. Consequently, an acceleration of collagen degradation in skin is postulated to have accompanied the expected depression of collagen synthesis; alterations of the physiochemical properties of skin from diabetic rats support this interpretation. For intestine, both net collagen synthesis and mass increased in diabetic rats, reflecting increased collagen synthesis—possibly associated with polyphagy.In conclusion, with regard to collagen metabolism, representative connective tissues respond differently to experimental diabetes, and we suggest that this insight will be useful in future studies aimed at understanding the pathophysiology of connective tissues affected by diabetes.  相似文献   

8.
Vasopeptidase inhibitors possess dual inhibitory actions on neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE) and have beneficial effects on cardiac remodeling. However, the contribution of NEP inhibition to their effects is not yet fully understood. To address the role of cardiac NEP inhibition in the anti-remodeling effects of a vasopeptidase inhibitor, we examined the effects of omapatrilat on the development of cardiac remodeling in rats with left coronary artery ligation (CAL) and those on collagen synthesis in cultured fibroblast cells. In vivo treatment with omapatrilat (30 mg/kg/day for 5 weeks) inhibited cardiac NEP activity in rats with CAL, which was associated with a suppression of both cardiac hypertrophy and collagen deposition. In cultured cardiac fibroblasts, omapatrilat (10–7~10–5 M) inhibited NEP activity and augmented the ANP-induced decrease in [3H]-proline incorporation. ONO-BB, an active metabolite of the NEP selective inhibitor ONO-9902, also augmented the ANP-induced response, whereas captopril, an ACE inhibitor, did not. The angiotensin I-induced increase in [3H]-proline incorporation was prevented by omapatrilat and captopril, but not by ONO-BB. The results suggest that vasopeptidase inhibitor suppressed cardiac remodeling in the setting of chronic heart failure, possibly acting through the direct inhibition of cardiac NEP. Vasopeptidase inhibitors may have therapeutic advantages over the classical ACE and NEP inhibitors alone with respect to the regression of cardiac fibrosis.  相似文献   

9.
Experiments were carried out to determine whether bone cells isolated from rat calvaria degrade newly synthesized collagen intracellularly prior to secretion and to assess the effect of dichloromethylenebisphosphonate, a compound shown to stimulate collagen synthesis during this event. The findings indicate that isolated bone cells grown in culture degraded a proportion (average 16%) of newly synthesizes collagen prior to secretion. This process was markedly reduced by exposure to dichloromethylenebisphosphonate in a dose-related manner. Concomitantly with the observed decrease of degradation, an increase of collagen synthesis was detected as determined by the incorporation of [3H]proline into collagenase-digestible proteins or by the conversion of [3H]proline into [3H]hydroxyproline. No similar enhancement on total non-collagenous protein synthesis was evident. Dichloromethylenebisphosphonate did not influence the extracellular degradation of collagen. Although the reduction in intracellular degradation accounted only for part of the bisphosphonate mediated increase in net collagen synthesis, it is conceivable that the rate of collagen synthesis is regulated, at least in part, by mechanisms that modulate the level of intracellular degradation.  相似文献   

10.
Angiotensin II (Ang II) plays an important role on the pathogenesis of cardiac fibrosis. Prolong and overstimulation of angiotensin II type 1 receptor with Ang II-induced collagen synthesis and myofibroblast differentiation in cardiac fibroblasts, leading to cardiac fibrosis. Although adenosine and its analogues are known to have cardioprotective effects, the mechanistic by which adenosine A2 receptors (A2Rs) inhibit Ang II-induced cardiac fibrosis is not clearly understood. In the present study, we examined the effects of exogenous adenosine and endogenous adenosine on Ang II-induced collagen and myofibroblast differentiation determined by α-smooth muscle action (α-SMA) overexpression and their underlying signal transduction. Elevation of endogenous adenosine levels resulted in the inhibition of Ang II-induced collagen type I and III and α-SMA synthesis in cardiac fibroblasts. Moreover, treatment with exogenous adenosine which selectively stimulated A2Rs also suppressed Ang II-induced collagen synthesis and α-SMA production. These antifibrotic effects of both endogenous and exogenous adenosines are mediated through the A2B receptor (A2BR) subtype. Stimulation of A2BR exhibited antifibrotic effects via the cAMP-dependent and Epac-dependent pathways. Our results provide new mechanistic insights regarding the role for cAMP and Epac on A2BR-mediated antifibrotic effects. Thus, A2BR is one of the potential therapeutic targets against cardiac fibrosis.  相似文献   

11.

Background and Aim

Chronic hepatic damage leads to liver fibrosis, which is characterized by the accumulation of collagen-rich extracellular matrix. However, the mechanism by which E3 ubiquitin ligase is involved in collagen synthesis in liver fibrosis is incompletely understood. This study aimed to explore the involvement of the E3 ubiquitin ligase synoviolin (Syno) in liver fibrosis.

Methods

The expression and localization of synoviolin in the liver were analyzed in CCl4-induced hepatic injury models and human cirrhosis tissues. The degree of liver fibrosis and the number of activated hepatic stellate cells (HSCs) was compared between wild type (wt) and Syno+/− mice in the chronic hepatic injury model. We compared the ratio of apoptosis in activated HSCs between wt and Syno+/− mice. We also analyzed the effect of synoviolin on collagen synthesis in the cell line from HSCs (LX-2) using siRNA-synoviolin and a mutant synoviolin in which E3 ligase activity was abolished. Furthermore, we compared collagen synthesis between wt and Syno−/− mice embryonic fibroblasts (MEF) using quantitative RT-PCR, western blotting, and collagen assay; then, we immunohistochemically analyzed the localization of collagen in Syno−/− MEF cells.

Results

In the hepatic injury model as well as in cirrhosis, synoviolin was upregulated in the activated HSCs, while Syno+/− mice developed significantly less liver fibrosis than in wt mice. The number of activated HSCs was decreased in Syno+/− mice, and some of these cells showed apoptosis. Furthermore, collagen expression in LX-2 cells was upregulated by synoviolin overexpression, while synoviolin knockdown led to reduced collagen expression. Moreover, in Syno−/− MEF cells, the amounts of intracellular and secreted mature collagen were significantly decreased, and procollagen was abnormally accumulated in the endoplasmic reticulum.

Conclusion

Our findings demonstrate the importance of the E3 ubiquitin ligase synoviolin in liver fibrosis.  相似文献   

12.
Despite evidence supporting a potential role for F2-isoprostanes (F2-IsoP's) in liver fibrosis, their signaling mechanisms are poorly understood. We have previously provided evidence that F2-IsoP's stimulate hepatic stellate cell (HSC) proliferation and collagen hyperproduction by activation of a modified form of isoprostane receptor homologous to the classic thromboxane receptor (TP). In this paper, we examined which signal transduction pathways are set into motion by F2-IsoP's to exert their fibrogenic effects. HSCs were isolated from rat liver, cultured to their activated myofibroblast-like phenotype, and then treated with the isoprostane 15-F2t-isoprostane (15-F2t-IsoP). Inositol trisphosphate (IP3) and adenosine 3′,5′-cyclic monophosphate (cAMP) levels were determined using commercial kits. Mitogen-activated protein kinase (MAPK) and cyclin D1 expression was assessed by Western blotting. Cell proliferation and collagen synthesis were determined by measuring [3H]thymidine and [3H]proline incorporation, respectively. 15-F2t-IsoP elicited an activation of extracellular-signal-regulated kinase (ERK), p38 MAPK, and c-Jun NH2-terminal kinase (JNK), which are known to be also regulated by G-protein-coupled receptors. Preincubation with specific ERK (PD98059), p38 (SB203580), or JNK (SP600125) inhibitors prevented 15-F2t-IsoP-induced cell proliferation and collagen synthesis. 15-F2t-IsoP decreased cAMP levels within 30 min, suggesting binding to the TPβ isoform and activation of Giα protein. Also, 15-F2t-IsoP increased IP3 levels within a few minutes, suggesting that the Gq protein pathway is also involved. In conclusion, the fibrogenic effects of F2-IsoP's in HSCs are mediated by downstream activation of MAPKs, through TP binding that couples via both Gqα and Giα proteins. Targeting TP receptor, or its downstream pathways, may contribute to preventing oxidative damage in liver fibrosis.  相似文献   

13.
Obesity is often associated with abnormalities in cardiac morphology and function. This study tested the hypothesis that obesity-related cardiomyopathy is caused by impaired cardiac energetics. In a mouse model of high-fat diet (HFD)-induced obesity, we applied in vivo cardiac 31P magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) to investigate cardiac energy status and function, respectively. The measurements were complemented by ex vivo determination of oxygen consumption in isolated cardiac mitochondria, the expression of proteins involved in energy metabolism, and markers of oxidative stress and calcium homeostasis. We also assessed whether HFD induced myocardial lipid accumulation using in vivo 1H MRS, and if this was associated with apoptosis and fibrosis. Twenty weeks of HFD feeding resulted in early stage cardiomyopathy, as indicated by diastolic dysfunction and increased left ventricular mass, without any effects on systolic function. In vivo cardiac phosphocreatine-to-ATP ratio and ex vivo oxygen consumption in isolated cardiac mitochondria were not reduced after HFD feeding, suggesting that the diastolic dysfunction was not caused by impaired cardiac energetics. HFD feeding promoted mitochondrial adaptations for increased utilization of fatty acids, which was however not sufficient to prevent the accumulation of myocardial lipids and lipid intermediates. Myocardial lipid accumulation was associated with oxidative stress and fibrosis, but not apoptosis. Furthermore, HFD feeding strongly reduced the phosphorylation of phospholamban, a prominent regulator of cardiac calcium homeostasis and contractility. In conclusion, HFD-induced early stage cardiomyopathy in mice is associated with lipotoxicity-associated oxidative stress, fibrosis, and disturbed calcium homeostasis, rather than impaired cardiac energetics.  相似文献   

14.
It has been postulated that causation of the tropical cardiomyopathy endomyocardial fibrosis (EMF) is linked to magnesium (Mg) deficiency and cardiac toxicity of the rare earth element cerium (Ce). The aim of the present study was to define the myocardial lesions in rabbits that were fed on Mg-restricted diet (70–80 ppm) periodically and were provided drinking water contaminated with rare earth chloride (1 g/L). Forty New Zealand white rabbits were divided into four groups following a 2 × 2 factorial design. Two groups were periodically fed on Mg-restricted diet with one of them receiving water contaminated with rare earth chloride. The other two groups were continuously fed on Mgsufficient diet (350–400 ppm) with one of them receiving water contaminated with rare earth chloride. All animals were sacrificed at the end of 6 mo. Cardiac tissues were subjected to histology, elemental analysis (calcium [Ca], Mg, and Ce) and estimation of collagen content and collagen phenotypes. Histological lesions were compared with those of EMF in humans and those of acute Mg deficiency in animals. The results suggest that in rabbits, recurrent episodes of Mg deficiency lead to myocardial fibrosis similar to the pattern observed in human EMF.  相似文献   

15.
Cardiotrophin-1 (CT-1), a member of the IL-6 family of cytokines, has been shown to be elevated in the serum of patients with ischemic heart disease and valvular heart disease, and induces cardiomyocyte hypertrophy in vitro. We investigated expression of CT-1 in post-MI rat heart and the effect of CT-1 on cultured primary adult rat cardiac fibroblasts. Elevated CT-1 expression was observed in the infarct zone at 24 h and continued through 2, 4 and 8 weeks post-MI, compared to sham-operated animals. CT-1 induced rapid phosphorylation of Jak1, Jak2, STAT1, STAT3, p42/44 MAPK and Akt in cultured adult cardiac fibroblasts. CT-1 induced cardiac fibroblast protein synthesis and proliferation. Protein and DNA synthesis were dependent on activation of Jak/STAT, MEK1/2, PI3K and Src pathways as evidenced by decreased 3H-leucine and 3H-thymidine incorporation after pretreatment with AG490, PD98059, LY294002 and genistein respectively. Furthermore, CT-1 treatment increased procollagen-1-carboxypropeptide (P1CP) synthesis, a marker of mature collagen synthesis. CT-1 induced cell migration of rat cardiac fibroblasts. Our results suggest that CT-1, as expressed in post-MI heart, may play an important role in infarct scar formation and ongoing remodeling of the scar. CT-1 was able to initiate each of the processes considered important in the formation of infarct scar including cardiac fibroblast migration as well as fibroblast proliferation and collagen synthesis. Further work is required to determine factors that induce CT-1 expression and interplay with other mediators of cardiac infarct wound healing in the setting of acute cardiac ischemia and chronic post-MI heart failure.  相似文献   

16.
Cerium has been implicated in the pathogenesis of cardiac disorders such as acute myocardial infarction and endomyocardial fibrosis (EMF). A geochemical hypothesis for the causation of EMF linked the cardiac lesions to magnesium deficiency consequent to malnutrition and increased cardiac levels of cerium derived from monazite soils in the coastal regions of the tropics. We tested the hypothesis that the stimulus for fibroblast proliferation and enhanced collagen synthesis in EMF is derived from cardiac endothelial cells activated or injured by cerium. We explored whether endocardial endothelial cells exposed to cerium secrete factors responsible for the increased proliferation and collagen synthesis in cardiac fibroblasts. Our results suggest that the growth response of cardiac fibroblasts to cerium is not mediated through growth factors secreted by endocardial endothelium and that the cardiac lesions in EMF result from direct stimulation of subendocardial fibroblasts by cerium.  相似文献   

17.
Endothelial cells derived from human pulmonary arteries incorporate (3H)-glucosamine and 35SO4 into glycosaminoglycans and into the carbohydrate side chains of glycoproteins. These 3H/35S-carbohydrate chains were isolated from cells and culture medium after Pronase digestion. The 3H/35S-glycosaminoglycans were separated from the 3H/35S glycopeptides by chromatography on Sephadex G-50. The distribution of cellular glycosaminoglycans and glycopeptides indicated that 30–60% of the cellular 35S-glycopeptides may be associated with the matrix components that are synthesized by the cell and attached to a plastic substratum. Human pulmonary arterial endothelial cells were grown on collagen or on a matrix derived from vascular smooth muscle cells in order to investigate how smooth muscle cell extracellular matrix components may regulate the synthesis of endothelial cell glycoconjugates. Endothelial cells grown on plastic release various proportions of the glycoconjugates they synthesize into the culture medium. However, these same cells, when grown on substratum composed of extracellular matrix materials, synthesized altered proportions of cell-associated glycosaminoglycans and reduced the levels of total glycosaminoglycans they released into the culture medium. Thus the growth of endothelial cells on a matrix of smooth muscle cell components indicates that the glycosaminoglycan materials released into the culture medium by cells grown on a plastic substratum may not be an accurate reflection of the levels or composition of extracellular matrix materials made by endothelial cells in vivo.  相似文献   

18.
Cardiac fibrosis is a pathophysiological process characterized by excessive deposition of extracellular matrix. We developed a cardiac hypertrophy model using transverse aortic constriction (TAC) to uncover mechanisms relevant to excessive deposition of extracellular matrix in mouse myocardial cells. TAC caused upregulation of Tripartite motif protein 72 (TRIM72), a tripartite motif-containing protein that is critical for proliferation and migration. Importantly, in vivo silencing of TRIM72 reversed TAC-induced cardiac fibrosis, as indicated by markedly increased left ventricular systolic pressure and decreased left ventricular end-diastolic pressure. TRIM72 knockdown also attenuated deposition of fibrosis marker collagen type I and α-smooth muscle actin (α-SMA). In an in vitro study, TRIM72 was similarly upregulated in cardiac fibroblasts. Knockdown of TRIM72 markedly suppressed collagen type I and α-SMA expression and significantly decreased the proliferation and migration of cardiac fibroblasts. However, TRIM72 overexpression markedly increased collagen type I and α-SMA expression and increased the proliferation and migration of cardiac fibroblasts. Further study demonstrated that TRIM72 increased phosphorylated STAT3 in cardiac fibroblasts. TRIM72 knockdown in cardiac fibroblasts resulted in increased expression of Notch ligand Jagged-1 and its downstream gene and Notch-1 intracellular domain. Inhibition of Notch-1 abrogated sh-TRIM72-induced cardiac fibrosis. Together, our results support a novel role for TRIM72 in maintaining fibroblast-to-myofibroblast transition and suppressing fibroblast growth by regulating the STAT3/Notch-1 pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号