首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lipid requirements of the Torpedo californica nicotinic acetylcholine receptor (nAChR) were assessed by reconstituting purified receptors into lipid vesicles of defined composition and by using photolabeling with 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID) to determine functionality. Earlier studies demonstrated that nAChRs reconstituted into membranes containing phosphatidylcholine (PC), the anionic lipid phosphatidic acid (PA), and cholesterol (CH) are particularly effective at stabilizing the nAChR in the resting (closed) state that is capable of undergoing agonist-induced conformational transitions (i.e., functionality). The present studies demonstrate that (1) there is no obligatory requirement for PC, (2) increasing the CH content serves to increase the degree to which nAChRs are stabilized in the resting state, and this effect saturates at approximately 35 mol % (molar lipid percentage), and (3) the effect of increasing levels of PA saturates at approximately 12 mol % and in the absence of PA nAChRs are stabilized in the desensitized state (i.e., nonfunctional). Native Torpedo membranes contain approximately 35 mol % CH but less than 1 mol % PA, suggesting that other anionic lipids may substitute for PA. We report that (1) phosphatidylserine (PS) and phosphatidylinositol (PI), anionic lipids that are abundant in native Torpedo membranes, also stabilize the receptor in the resting state although with reduced efficacy (approximately 50-60%) compared to PA, and (2) for nAChRs reconstituted into PA/CH membranes at different lipid-protein molar ratios, receptor functionality decreases rapidly below approximately 65 lipids per receptor. Collectively, these results are consistent with a functional requirement of a single shell of lipids surrounding the nAChR and specific anionic lipid- and sterol (CH)-protein interactions.  相似文献   

2.
Interactions between the nicotinic acetylcholine receptor (nAChR) and phosphatidic acid (PA) are bidirectional in that membranes containing PA are effective at stabilizing an agonist-responsive nAChR, whereas incorporation of the nAChR into the same membranes leads to a substantial increase in lipid lateral packing density. A previous study suggested that the ability of PA to adopt a dianionic ionization state is key. We monitored the ionization state of PA in both reconstituted and protein-free membranes. In model membranes composed of PA and 3:2 (mol/mol) phosphatidylcholine (PC)/PA, the monoanionic-to-dianionic transition of PA was detected with a pKa of 8.7 and 6.5, respectively. In the reconstituted 3:2 PC/PA membranes, however, PA was stabilized in a monoanionic state at pH values up to 10. Although dianionic PA does not play a role in nAChR function, we found that both the stabilization of monoanionic PA and the concentration of other cations at the bilayer surface can account for changes in bilayer physical properties that are observed upon incorporation of the nAChR into 3:2 PC/PA membranes. A nAChR-induced concentration of cations at the bilayer surface likely mediates interactions between the nAChR and the anionic lipids in its membrane environment.  相似文献   

3.
Bilayers containing phosphatidylcholine (PC) and the anionic lipid phosphatidic acid (PA) are particularly effective at stabilizing the nicotinic acetylcholine receptor (nAChR) in a functional conformation that undergoes agonist-induced conformational change. The physical properties of PC membranes containing PA are also substantially altered upon incorporation of the nAChR. To test whether or not the negative charge of PA is responsible for this "bi-directional coupling," the nAChR was reconstituted into membranes composed of PC with varying levels of the net negatively charged lipid phosphatidylserine (PS). In contrast to PA, increasing levels of PS in PC membranes do not stabilize an increasing proportion of nAChRs in a functional resting conformation, nor do they slow nAChR peptide hydrogen exchange kinetics. Incorporation of the nAChR had little effect on the physical properties of the PC/PS membranes, as monitored by the gel-to-liquid crystal phase transition temperatures of the bilayers. These results show that a net negative charge alone is not sufficient to account for the unique interactions that occur between the nAChR and PC/PA membranes. Incorporation of the receptor into PC/PS membranes, however, did lead to an altered head group conformation of PS possibly by recruiting divalent cations to the membrane surface. The results show that the nAChR has complex and unique interactions with both PA and PS. The interactions between the nAChR and PS may be bridged by divalent cations, such as calcium.  相似文献   

4.
The effects of cholesterol (Chol) and an anionic lipid, dioleoylphosphatidic acid (DOPA) on the conformational equilibria of the nicotinic acetylcholine receptor (nAChR) have been investigated using Fourier transform infrared difference spectroscopy. The difference between spectra recorded in the presence and absence of agonist from the nAChR reconstituted into 3:1:1 egg phosphatidylcholine (EPC)/DOPA/Chol membranes exhibits positive and negative bands that serve as markers of the structural changes associated with the resting to desensitized conformational change. These markers are absent in similar difference spectra recorded from the nAChR reconstituted into EPC membranes lacking both Chol and DOPA, indicating that the nAChR cannot undergo conformational change in response to agonist binding. When low levels of either Chol or DOPA up to 25 mol % of the total lipid are included in the EPC membranes, the markers suggest the predominant stabilization of a conformation that is a structural intermediate between the resting and desensitized states. At higher levels of either Chol or DOPA, the nAChR is stabilized in a conformation that is capable of undergoing agonist-induced desensitization, although DOPA appears to be required for the nAChR to adopt a conformation fully equivalent to that found in native and 3:1:1 EPC/DOPA/Chol membranes. The ability of these two structurally diverse lipids, as well as others (Ryan, S. E., Demers, C. N., Chew, J. P., Baenziger, J. E. (1996) J. Biol. Chem. 271, 24590-24597), to modulate the functional state of the nAChR suggests that lipids act on the nAChR via an indirect effect on some physical property of the lipid bilayer. The data also suggest that anionic lipids are essential to stabilize a fully functional nAChR. We propose that membrane fluidity modulates the relative populations of nAChRs in the resting and desensitized states but that subtle structural changes in the presence of anionic lipids are essential for full activity.  相似文献   

5.
Hung A  Yarovsky I 《Biochemistry》2011,50(9):1492-1504
Interactions with membrane lipids can exert dramatic functional consequences on gap junction proteins. Recent experimental work has highlighted the importance of anionic lipids and cholesterol in facilitating channel activity. In this work, we have employed a coarse-grained molecular model in conjunction with molecular dynamics (MD) simulations to study the interactions between a connexin 26 (Cx26) hemichannel and a number of lipid species, including palmitoyloleoylphosphatidylcholine (POPC), anionic palmitoyloleoylphosphatidic acid (POPA), and cholesterol, in order to identify sites at the protein interface which may exhibit preferential, specific binding to these lipids, as well as determine the characteristics of these interactions. We have also employed an atomistic model of Cx26 embedded in a mixed PA/PC bilayer as a comparison and to elucidate further lipid-protein interactions. Our simulation results suggest enrichment of interfacial PA at the intracellular leaflet at high bulk PA concentrations. PC can form tight binding interactions with the hemichannel, particularly at intersubunit crevices (classical nonannular sites). In mixed bilayers, however, POPA competes with POPC for these sites, displacing the latter in some cases. While the residues responsible for interactions with PC and PA are similar, the latter exhibits a unique property of being capable of forming stable hydrophilic contacts with multiple residues spanning two different adjacent subunits at both leaflets of the bilayer, as opposed to POPC which can only do so at the extracellular side. These results suggest that POPA may be essential to channel function by acting as an intersubunit lipid bridge. Additionally, we propose that the compositional enrichment of POPA at the Cx26 interface may serve important roles in voltage gating. Simulation of a mixed POPC:cholesterol bilayer suggests that the hemichannel enhances the transbilayer mobility of vicinal cholesterols, increasing the likelihood of site-hopping and interleaflet flip-flop transitions.  相似文献   

6.
Membrane lipids are potent modulators of the nicotinic acetylcholine receptor (nAChR) from Torpedo. Lipids influence nAChR function by both conformational selection and kinetic mechanisms, stabilizing varying proportions of activatable versus non-activatable conformations, as well as influencing the transitions between these conformational states. Of note, some membranes stabilize an electrically silent uncoupled conformation that binds agonist but does not undergo agonist-induced conformational transitions. The uncoupled nAChR, however, does transition to activatable conformations in relatively thick lipid bilayers, such as those found in lipid rafts. In this review, we discuss current understanding of lipid–nAChR interactions in the context of increasingly available high resolution structural and functional data. These data highlight different sites of lipid action, including the lipid-exposed M4 transmembrane α-helix. Current evidence suggests that lipids alter nAChR function by modulating interactions between M4 and the adjacent transmembrane α-helices, M1 and M3. These interactions have also been implicated in both the folding and trafficking of nAChRs to the cell surface. We review current mechanistic understanding of lipid–nAChR interactions, and highlight potential biological roles for lipid–nAChR interactions in modulating the synaptic response. This article is part of a Special Issue entitled: Lipid–protein interactions.  相似文献   

7.
The ionophoretic capabilities of phosphoglycerides (PL) have been examined by measuring their translocation via cations from aqueous dispersions into linear and cyclic hydrocarbons. The PL surveyed were phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylcholine (PC) and phosphatidylinositol (PI). Only PA displayed ionophoretic activity in single lipid dispersions with a cation selectivity order of Mn greater than Ca. PG, PE and PC, but not PI, had a synergistic affect of PA induced translocation. These PL, inactive individually or in any combination, became strong Ca2+ ionophores of variable activity in association with PA. A dimeric structure proposed for the ionophoretic species forms the basis of a mechanism for transbilayer movement of PA, PG, PE and PC which would establish an asymmetric distribution of these lipids in the two faces of the bilayer by equilibrium processes.  相似文献   

8.
Functional membranes containing purified Torpedo californica acetylcholine receptor and dioleoylphosphatidylcholine (DOPC) were prepared by a cholate dialysis procedure with lipid to protein ratios of 100-400 to 1 (mol/mol). Spin-labeled lipids were incorporated into the reconstituted membranes and into native membranes prepared from Torpedo electroplax, and electron paramagnetic resonance (EPR) spectra were recorded between 0 and 20 degrees C. The spin-labels included nitroxide derivatives of stearic acid (16-doxylstearic acid), androstane, phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidic acid (PA). The phospholipid spin-labels had 16-doxylstearic acid in the sn-2 position. All the spectra showed two components corresponding to a relatively mobile bilayer component and a motionally restricted "protein-perturbed" component. The relative amounts of mobile and perturbed components were quantitated by spectral subtraction and integration techniques. The mobile/perturbed ratio was somewhat temperature dependent, and the results are discussed in terms of exchange between mobile and perturbed environments. Plots of the mobile/perturbed ratios vs. lipid/protein ratios at 1 degree C gave straight lines from which the relative binding affinity of each spin-label and the number of perturbed lipids per receptor protein could be calculated. All the spin-labels gave similar values for the number of perturbed lipids (40 +/- 7), a number close to the number of lipids that will fit around the intramembranous perimeter of the receptor. The affinities of the spin-labeled lipids for the receptor relative to DOPC were androstane (K = 4.3) congruent to 16-doxylstearic acid (4.1) greater than PA (2.7) greater than PE (1.1) approximately PC (1.0) approximately PS (0.7). The lipids having the highest affinity for the acetylcholine receptor were also those that have the largest effects on the ion flux functional properties of the receptor, and the results are discussed in terms of lipid effects on receptor function.  相似文献   

9.
The role and mechanism of formation of lipid domains in a functional membrane have generally received limited attention. Our approach, based on the hypothesis that thermodynamic coupling between lipid-lipid and protein-lipid interactions can lead to domain formation, uses a combination of an experimental lipid bilayer model system and Monte Carlo computer simulations of a simple model of that system. The experimental system is a fluid bilayer composed of a binary mixture of phosphatidylcholine (PC) and phosphatidylserine (PS), containing 4% of a pyrene-labeled anionic phospholipid. Addition of the C2 protein motif (a structural domain found in proteins implicated in eukaryotic signal transduction and cellular trafficking processes) to the bilayer first increases and then decreases the excimer/monomer ratio of the pyrene fluorescence. We interpret this to mean that protein binding induces anionic lipid domain formation until the anionic lipid becomes saturated with protein. Monte Carlo simulations were performed on a lattice representing the lipid bilayer to which proteins were added. The important parameters are an unlike lipid-lipid interaction term and an experimentally derived preferential protein-lipid interaction term. The simulations support the experimental conclusion and indicate the existence of a maximum in PS domain size as a function of protein concentration. Thus, lipid-protein coupling is a possible mechanism for both lipid and protein clustering on a fluid bilayer. Such domains could be precursors of larger lipid-protein clusters ('rafts'), which could be important in various biological processes such as signal transduction at the level of the cell membrane.  相似文献   

10.
Expression of S protein, an envelope protein of hepatitis B virus, in the absence of other viral proteins, leads to the secretion of hepatitis B virus surface antigen (HBsAg) particles that are formed by budding from the endoplasmic reticulum membranes. The HBsAg particles produced by mouse fibroblast cells show a unique lipid composition, with 1,2-diacyl glycerophosphocholine being the dominant component. The lipid organization of the HBsAg particles was studied by measuring electron spin resonance (ESR) using various spin-labeled fatty acids, and the results were compared with a parallel study on HVJ (Sendai virus) and vesicles reconstituted with total lipids of the HBsAg particles (HBs-lipid vesicles). HVJ and the HBs-lipid vesicles showed typical ESR spectra of lipids arranged in a lipid bilayer structure. In contrast, the ESR spectra obtained with the HBsAg particles showed that the movement of lipids in the particle is severely restricted and a typical immobilized signal characteristic of tight lipid-protein interactions was also evident. Phosphatidylcholine (PC) in the HBsAg particles was not exchangeable by a PC-specific exchange protein purified from bovine liver, while phospholipase A(2) from Naja naja vemon was able to hydrolyze all the PC in the particles. These analyses suggest that the lipids in the HBsAg particles are not organized in a typical lipid bilayer structure, but are located at the surface of the particles and are in a highly immobilized state. Based on these observations we propose a unique lipid assembly and membrane structure model for HBsAg particles.  相似文献   

11.
The reason for the enormous lipid variety present in eukaryotic membranes remains largely an enigma. We suggest that its role is to provide an on-off switch for a signaling event at the membrane level. This is achieved through lipid-lipid interactions that convert membrane protein binding and association events into very cooperative processes while maintaining reversibility. We have previously shown [Hinderliter, A., at al. (2001) Biochemistry 40, 4181-4191] that thermodynamic linkage between an intrinsic tendency for lipid demixing and a preferential interaction of a protein with a specific lipid within the mixture leads to dramatic changes in lipid and protein domain formation. Here, we tested the hypothesis that small alterations in lipid chemical structure alter the magnitude of the net interaction free energy (omega(AB)) between unlike lipids in a predictable manner, and that even very small changes in omega(AB) lead to dramatic changes in bilayer organization when coupled with protein binding. We systematically varied the chemical structure of phosphatidylcholine (PC), in mixtures with a fixed phosphatidylserine (PS), by changing the PC acyl chain length and the degree of unsaturation, and examined domain formation upon addition of a peripheral protein, the synaptotagmin I C2A motif. Experimental excimer/monomer ratios (E/M) of pyrene-substituted lipids mimicking the PS were interpreted using Monte Carlo computer simulations. E/M is larger if the PC melting temperature is lower, suggesting that domain formation is a thermodynamic consequence of weak interactions between PC and PS. Consistent with our hypothesis, only very small changes in omega(AB) were required for prediction of large changes in lipid and protein domain formation.  相似文献   

12.
The potassium channel KcsA forms an extremely stable tetramer. Despite this high stability, it has been shown that the membrane-mimicking solvent 2,2,2-trifluoroethanol (TFE) can induce tetramer dissociation [Valiyaveetil, F. I., et al. (2002) Biochemistry 41, 10771-7, and Demmers, J. A. A., et al. (2003) FEBS Lett. 541, 69-77]. Here we have studied the effect of TFE on the structure and oligomeric state of the KcsA tetramer, reconstituted in different lipid systems. It was found that TFE changes the secondary and tertiary structure of KcsA and that it can dissociate the KcsA tetramer in all systems used. The tetramer is stabilized by a lipid bilayer as compared to detergent micelles. The extent of stabilization was found to depend on the nature of the lipids: a strong stabilizing effect of the nonbilayer lipid phosphatidylethanolamine (PE) was observed, but no effect of the charged phoshosphatidylglycerol (PG) as compared to phosphatidylcholine (PC) was found. To understand how lipids stabilize KcsA against TFE-induced tetramer dissociation, we also studied the effect of TFE on the bilayer organization in the various lipid systems, using (31)P and (2)H NMR. The observed lipid dependency was similar as was found for tetramer stabilization: PE increased the bilayer stability as compared to PC, while PG behaved similar to PC. Furthermore, it was found that TFE has a large effect on the acyl chain ordering. The results indicate that TFE inserts primarily in the membrane interface. We suggest that the lipid bilayer stabilizes the KcsA tetramer by the lateral pressure in the acyl chain region and that this stabilizing effect increases when a nonbilayer lipid like PE is present.  相似文献   

13.
Sticholysin I and II (St I and St II), two basic cytolysins purified from the Caribbean sea anemone Stichodactyla helianthus, efficiently permeabilize lipid vesicles by forming pores in their membranes. A general characteristic of these toxins is their preference for membranes containing sphingomyelin (SM). As a consequence, vesicles formed by equimolar mixtures of SM with phosphatidylcholine (PC) are very good targets for St I and II. To better characterize the lipid dependence of the cytolysin-membrane interaction, we have now evaluated the effect of including different lipids in the composition of the vesicles. We observed that at low doses of either St I or St II vesicles composed of SM and phosphatidic acid (PA) were permeabilized faster and to a higher extent than vesicles of PC and SM. As in the case of PC/SM mixtures, permeabilization was optimal when the molar ratio of PA/SM was ~1. The preference for membranes containing PA was confirmed by inhibition experiments in which the hemolytic activity of St I was diminished by pre-incubation with vesicles of different composition. The inclusion of even small proportions of PA into PC/SM LUVs led to a marked increase in calcein release caused by both St I and St II, reaching maximal effect at ~5 mol % of PA. Inclusion of other negatively charged lipids (phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), or cardiolipin (CL)), all at 5 mol %, also elicited an increase in calcein release, the potency being in the order CL approximately PA > PG approximately PI approximately PS. However, some boosting effect was also obtained, including the zwitterionic lipid phosphatidylethanolamine (PE) or even, albeit to a lesser extent, the positively charged lipid stearylamine (SA). This indicated that the effect was not mediated by electrostatic interactions between the cytolysin and the negative surface of the vesicles. In fact, increasing the ionic strength of the medium had only a small inhibitory effect on the interaction, but this was actually larger with uncharged vesicles than with negatively charged vesicles. A study of the fluidity of the different vesicles, probed by the environment-sensitive fluorescent dye diphenylhexatriene (DPH), showed that toxin activity was also not correlated to the average membrane fluidity. It is suggested that the insertion of the toxin channel could imply the formation in the bilayer of a nonlamellar structure, a toroidal lipid pore. In this case, the presence of lipids favoring a nonlamellar phase, in particular PA and CL, strong inducers of negative curvature in the bilayer, could help in the formation of the pore. This possibility is confirmed by the fact that the formation of toxin pores strongly promotes the rate of transbilayer movement of lipid molecules, which indicates local disruption of the lamellar structure.  相似文献   

14.
In this study, we investigated how the presence of anionic lipids influenced the stability and folding properties of the potassium channel KcsA. By using a combination of gel electrophoresis, tryptophan fluorescence and acrylamide quenching experiments, we found that the presence of the anionic lipid phosphatidylglycerol (PG) in a phosphatidylcholine (PC) bilayer slightly stabilized the tetramer and protected it from trifluoroethanol-induced dissociation. Surprisingly, the presence of phosphatidic acid (PA) had a much larger effect on the stability of KcsA and this lipid, in addition, significantly influenced the folding properties of the protein. The data indicate that PA creates some specificity over PG, and that it most likely stabilizes the tetramer via both electrostatic and hydrogen bond interactions.  相似文献   

15.
Although the Torpedo nicotinic acetylcholine receptor (nAChR) reconstituted into phosphatidylcholine (PC) membranes lacking cholesterol and anionic lipids adopts a conformation where agonist binding is uncoupled from channel gating, the underlying mechanism remains to be defined. Here, we examine the mechanism behind lipid-dependent uncoupling by comparing the propensities of two prokaryotic homologs, Gloebacter and Erwinia ligand-gated ion channel (GLIC and ELIC, respectively), to adopt a similar uncoupled conformation. Membrane-reconstituted GLIC and ELIC both exhibit folded structures in the minimal PC membranes that stabilize an uncoupled nAChR. GLIC, with a large number of aromatic interactions at the interface between the outermost transmembrane α-helix, M4, and the adjacent transmembrane α-helices, M1 and M3, retains the ability to flux cations in this uncoupling PC membrane environment. In contrast, ELIC, with a level of aromatic interactions intermediate between that of the nAChR and GLIC, does not undergo agonist-induced channel gating, although it does not exhibit the expected biophysical characteristics of the uncoupled state. Engineering new aromatic interactions at the M4-M1/M3 interface to promote effective M4 interactions with M1/M3, however, increases the stability of the transmembrane domain to restore channel function. Our data provide direct evidence that M4 interactions with M1/M3 are modulated during lipid sensing. Aromatic residues strengthen M4 interactions with M1/M3 to reduce the sensitivities of pentameric ligand-gated ion channels to their surrounding membrane environment.  相似文献   

16.
The dissociation state of phosphatidic acid (PA) in a lipid bilayer is governed by the competition of proton binding and formation of a hydrogen bond through a mechanism termed the electrostatic-hydrogen bond switch. This mechanism has been suggested to provide the basis for the specific recognition of PA by proteins. Even in bare lipid bilayers the electrostatic-hydrogen bond switch is present if the membrane contains lipids like phosphatidylethanolamine that act as hydrogen bond donors. In this case, the dissociation state (pK(a)) of PA depends strongly on membrane composition. In the present work we incorporate the electrostatic-hydrogen bond switch mechanism into the Gouy-Chapman model for a membrane that is composed of PA and a hydrogen bond-donating zwitterionic lipid. To this end, our model integrates into the Gouy-Chapman approach a recently suggested electrostatic model for zwitterionic lipids. Hydrogen bond formation is incorporated phenomenologically as an additional non-electrostatic interaction between the phosphomonoester headgroup of PA and the zwitterionic lipid headgroup. We express the energetics of the composite membrane in terms of a free energy functional whose minimization leads to a modified non-linear Poisson-Boltzmann equation that we have solved numerically. Our calculations focus on the influence of the membrane environment on the dissociation state of PA. This influence can be expressed as a shift of the second pK(a) of PA, which we calculate as function of membrane composition, following experimental observation. The shift is large and negative if PA is the minor component in the membrane, and it changes over four pH units as function of the mole fraction of PA in the membrane. In contrast, the shift of the second pK(a) of PA remains small and is always positive if the zwitterionic lipid is unable to act as hydrogen bond donor. Hence, we find that the electrostatic-hydrogen bond switch mechanism regulates the dissociation state of PA with much greater sensitivity than would be possible based on a pure electrostatic regulation through the membrane potential.  相似文献   

17.
Substrate-supported lipid bilayers have been prepared from bis-diene functionalized phosphorylcholine (PC) lipids and polymerized by UV irradiation. The overall bilayer structure is largely preserved upon removal from water, although significant loss of material occurs from the upper leaflet of the bilayer, likely due to desorption at the air/water interface. The morphology and surface structure of the bilayer, as observed by AFM, indicate a substantially different arrangement of the lipids in the hydrated and dehydrated states, presumably due to the loss of water from the near surface region. These changes have been correlated with infrared spectral shifts sensitive to the conformation of the hydrocarbon chains. Protein adsorption studies show that rehydrated, polymerized bilayers retain a degree of resistance to BSA adsorption intermediate between model hydrophobic and fluid PC lipid bilayer surfaces. The degree of protein adsorption is correlated with desorption of material from the upper leaflet of the bilayer upon drying, which produces voids at which hydrophobically driven protein adsorption occurs.  相似文献   

18.
In the present study, the solubility and enzymatic de-epoxidation of diadinoxanthin (Ddx) was investigated in three different artificial membrane systems: (1) Unilamellar liposomes composed of different concentrations of the bilayer forming lipid phosphatidylcholine (PC) and the inverted hexagonal phase (H(II) phase) forming lipid monogalactosyldiacylglycerol (MGDG), (2) liposomes composed of PC and the H(II) phase forming lipid phosphatidylethanolamine (PE), and (3) an artificial membrane system composed of digalactosyldiacylglycerol (DGDG) and MGDG, which resembles the lipid composition of the natural thylakoid membrane. Our results show that Ddx de-epoxidation strongly depends on the concentration of the inverted hexagonal phase forming lipids MGDG or PE in the liposomes composed of PC or DGDG, thus indicating that the presence of inverted hexagonal structures is essential for Ddx de-epoxidation. The difference observed for the solubilization of Ddx in H(II) phase forming lipids compared with bilayer forming lipids indicates that Ddx is not equally distributed in the liposomes composed of different concentrations of bilayer versus non-bilayer lipids. In artificial membranes with a high percentage of bilayer lipids, a large part of Ddx is located in the membrane bilayer. In membranes composed of equal proportions of bilayer and H(II) phase forming lipids, the majority of the Ddx molecules is located in the inverted hexagonal structures. The significance of the pigment distribution and the three-dimensional structure of the H(II) phase for the de-epoxidation reaction is discussed, and a possible scenario for the lipid dependence of Ddx (and violaxanthin) de-epoxidation in the native thylakoid membrane is proposed.  相似文献   

19.
Transmembrane segments of ion channels tend to match the hydrophobic thickness of lipid bilayers to minimize mismatch energy and to maintain their proper organization and function. To probe how ion channels respond to mismatch with lipid bilayers of different thicknesses, we examined the single channel activities of BK(Ca) (hSlo alpha-subunit) channels in planar bilayers of binary mixtures of DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) with phosphatidylcholines (PCs) of varying chain lengths, including PC 14:1, PC 18:1, PC 22:1, PC 24:1, and with porcine brain sphingomyelin. Bilayer thickness and structure was measured with small angle x-ray diffraction and atomic force microscopy. The open probability (P(o)) of the BK(Ca) channel was finely tuned by bilayer thickness, first decreasing with increases in bilayer thickness from PC 14:1 to PC 22:1 and then increasing from PC 22:1 to PC 24:1 and to porcine brain sphingomyelin. Single channel kinetic analyses revealed that the mean open time of the channel increased monotonically with bilayer thickness and, therefore, could not account for the biphasic changes in P(o). The mean closed time increased with bilayer thickness from PC 14:1 up to PC 22:1 and then decreased with further increases in bilayer thickness to PC 24:1 and sphingomyelin, correlating with changes in P(o). This is consistent with the proposition that bilayer thickness affects channel activity mainly through altering the stability of the closed state. We suggest a simple mechanical model that combines forces of lateral stress within the lipid bilayer with local hydrophobic mismatch between lipids and the protein to account for the biphasic modulation of BK(Ca) gating.  相似文献   

20.
We investigate the role of anionic lipids in the binding to, and subsequent movement of charged protein groups in lipid membranes, to help understand the role of membrane composition in all membrane-active protein sequences. We demonstrate a small effect of phosphatidylglycerol (PG) lipids on the ability of an arginine (Arg) side chain to bind to, and cross a lipid membrane, despite possessing a neutralizing charge. We observe similar membrane deformations in lipid bilayers composed of phosphatidylcholine (PC) and PC/PG mixtures, with comparable numbers of water and lipid head groups pulled into the bilayer hydrocarbon core, and prohibitively large ~20 kcal/mol barriers for Arg transfer across each bilayer, dropping by just 2-3 kcal/mol due to the binding of PG lipids. We explore the causes of this small effect of introducing PG lipids and offer an explanation in terms of the limited membrane interaction for the choline groups of PC lipids bound to the translocating ion. Our calculations reveal a surprising lack of preference for Arg binding to PG lipids themselves, but a small increase in interfacial binding affinity for lipid bilayers containing PG lipids. These results help to explain the nature of competitive lipid binding to charged protein sequences, with implications for a wide range of membrane binding domains and cell perturbing peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号