首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to obtain new, cluster-forming antibiotic compounds, teicoplanin pseudoaglycone derivatives containing two lipophilic n-octyl chains have been synthesized. The compounds proved to be poor antibacterials, but, surprisingly, they exhibited potent anti-influenza virus activity against influenza A strains. This antiviral action was related to inhibition of the binding interaction between the virus and the host cell. Related analogs bearing methyl substituents in lieu of the octyl chains, displayed no anti-influenza virus activity. Hence, an interaction between the active, dually n-octylated compounds and the lipid bilayer of the host cell can be postulated, to explain the observed inhibition of influenza virus attachment.  相似文献   

2.
In order to understand the interaction between naratriptan and a fully hydrated bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl-choline (POPC), we carried out molecular dynamics simulations. The simulations were performed considering neutral and protonated ionization states, starting from different initial conditions. At physiological pH, the protonated state of naratriptan is predominant. It is expected that neutral compounds could have larger membrane partition than charged compounds. However, for the specific case of triptans, it is difficult to study neutral species in membranes experimentally, making computer simulations an interesting tool. When the naratriptan molecules were originally placed in water, they partitioned between the bilayer/water interface and water phase, as has been described for similar compounds. From this condition, the drugs displayed low access to the hydrophobic environment, with no significant effects on bilayer organization. The molecules anchored in the interface, due mainly to the barrier function of the polar and oriented lipid heads. On the other hand, when placed inside the bilayer, both neutral and protonated naratriptan showed self-aggregation in the lipid tail environment. In particular, the protonated species exhibited a pore-like structure, dragging water through this environment.
Graphical Abstract Different behaviour of Naratriptan and Sumatriptan, when the drugs were originally placed in the lipid core
  相似文献   

3.
The M2 protein is a small proton channel found in the influenza A virus that is necessary for viral replication. The M2 channel is the target of a class of drugs called the adamantanes, which block the channel pore and prevent the virus from replicating. In recent decades mutations have arisen in M2 that prevent the adamantanes from binding to the channel pore, with the most prevalent of these mutations being S31N. Here we report the first crystal structure of the S31N mutant crystallized using lipidic cubic phase crystallization techniques and solved to 1.59 Å resolution. The Asn31 residues point directly into the center of the channel pore and form a hydrogen‐bonded network that disrupts the drug‐binding site. Ordered waters in the channel pore form a continuous hydrogen bonding network from Gly34 to His37.  相似文献   

4.
Resonance energy transfer between anthrylvinyl-labeled phosphatidylcholine as a donor and heme moiety of cytochrome c (cyt c) as an acceptor has been employed to explore the protein binding to model membranes, composed of phosphatidylcholine and cardiolipin (CL). The existence of two types of protein-lipid complexes has been hypothesized where either deprotonated or partially protonated CL molecules are responsible for cyt c attachment to bilayer surface. To quantitatively describe cyt c membrane binding, the adsorption model based on scaled particle and double layer theories has been employed, with potential-dependent association constants being treated as a function of acidic phospholipid mole fraction, degree of CL protonation, ionic strength, and surface coverage. Multiple arrays of resonance energy transfer data obtained under conditions of varying pH, ionic strength, CL content, and protein/lipid molar ratio have been analyzed in terms of the model of energy transfer in two-dimensional systems combined with the adsorption model allowing for area exclusion and electrostatic effects. The set of recovered model parameters included effective protein charge, intrinsic association constants, and heme distance from the bilayer midplane for both types of protein-lipid complexes. Upon increasing CL mole fraction from 10 to 20 mol % (the value close to that characteristic of the inner mitochondrial membrane), the binding equilibrium dramatically shifted toward cyt c association with partially protonated CL species. The estimates of heme distance from bilayer center suggest shallow bilayer location of cyt c at physiological pH, whereas at pH below 6.0, the protein tends to insert into membrane core.  相似文献   

5.
The PhoE porin of Escherichia coli is induced by phosphate deprivation and when purified, forms moderately anion-selective channels in lipid bilayer membranes. To further investigate the basis of anion selectivity, PhoE was chemically acetylated with acetic anhydride. Acetylation modified the mobility and staining characteristics of the PhoE porin on SDS-polyacrylamide gel electrophoresis but the acetylated protein was still found in its normal trimeric state after solubilization in SDS at low temperatures. Furthermore, the acetylated PhoE porin retained its ability to reconstitute into lipid bilayer membranes and the single channel conductance in 1 M KCl was unaltered. Zero-current potential measurements demonstrated that whereas the native PhoE porin was anion-selective, a 30-40-fold increase in preference for cations upon acetylation resulted in the acetylated PhoE porin being cation-selective. Increasing the pH of KCl solutions bathing lipid bilayer membranes from pH 3 to pH 6 caused symmetrical 4-fold increases in the selectivity of both the native and acetylated PhoE proteins for cations. In contrast, increasing the pH from 7 to 9 caused a 2.5-fold increase in selectivity only for the native PhoE porin. These results suggest that the basis of anion selectivity in the native PhoE porin is fixed protonated amino groups (possibly on lysines) in or near the channel, and furthermore indicate that deprotonated carboxyl groups have a strong influence on ion selectivity.  相似文献   

6.
Protonophores can be considered as candidates for anti-obesity drugs and tools to prevent excessive reactive oxygen species production in mitochondria by means of a limited decrease in the mitochondrial potential. Experimentally used protonophores are weak acids that can carry protons across a membrane in a neutral (protonated) form, and they come back in an anionic (deprotonated) form. A cationic derivative of rhodamine 19 and plastoquinone (SkQR1) was recently shown to possess uncoupling activity in mitochondria and in intact cells. In this article, we studied the mechanism of action of SkQR1 and its plastoquinone-lacking analog (C12R1) on a planar bilayer lipid membrane by applying voltage jumps. The steady-state current was proportional to the C12R1 concentration in a manner as if the monomeric form of the carrier were operative. As predicted by the carrier model, at high pH, when rhodamines were mainly deprotonated, the current changed immediately following a jump in the applied potential and then remained constant. By contrast, at low pH, the current relaxed from an initially high value to a lower value since the protonated carrier cations were redistributed in the membrane. An inverse pH dependence was revealed with the anionic protonophore CCCP. The dependence of the SkQR1 protonophorous activity on voltage exhibited an increase at high voltages, an effect that might facilitate mild (self-limited) uncoupling of mitochondria.  相似文献   

7.
The influenza virus M2 protein is a well-validated yet underexploited proton-selective ion channel essential for influenza virus infectivity. Because M2 is a toxic viral ion channel, existing M2 inhibitors have been discovered through live virus inhibition or medicinal chemistry rather than M2-targeted high-throughput screening (HTS), and direct measurement of its activity has been limited to live cells or reconstituted lipid bilayers. Here, we describe a cell-free ion channel assay in which M2 ion channels are incorporated into virus-like particles (VLPs) and proton conductance is measured directly across the viral lipid bilayer, detecting changes in membrane potential, ion permeability, and ion channel function. Using this approach in high-throughput screening of over 100,000 compounds, we identified 19 M2-specific inhibitors, including two novel chemical scaffolds that inhibit both M2 function and influenza virus infectivity. Counterscreening for nonspecific disruption of viral bilayer ion permeability also identified a broad-spectrum antiviral compound that acts by disrupting the integrity of the viral membrane. In addition to its application to M2 and potentially other ion channels, this technology enables direct measurement of the electrochemical and biophysical characteristics of viral membranes.  相似文献   

8.
Yoo J  Cui Q 《Biophysical journal》2008,94(8):L61-L63
Free energy perturbation calculations are carried out to estimate the effective pKa of an arginine (Arg) sidechain as a function of its location in the dipalmitoylphosphatidylcholine bilayer. Similar to previous all-atom simulations of the voltage sensor domain of a potassium channel in the membrane with charged Arg residues, the membrane and water structures deform to stabilize the charge of the Arg analog. As a result, the computed pKa is >7 throughout the membrane although the value is very close to 7 near the center of the bilayer. With additional stabilizations from negatively charged amino acids or lipid molecules, it is reasonable to expect that Arg in membrane proteins (once in the membrane) can adopt the protonated state despite the low dielectric nature of the bulk lipid membrane.  相似文献   

9.
Bemporad D  Sands ZA  Wee CL  Grottesi A  Sansom MS 《Biochemistry》2006,45(39):11844-11855
VSTx1 is a tarantula venom toxin which binds to the archaebacterial voltage-gated potassium channel KvAP. VSTx1 is thought to access the voltage sensor domain of the channel via the lipid bilayer phase. In order to understand its mode of action and implications for the mechanism of channel activation, it is important to characterize the interactions of VSTx1 with lipid bilayers. Molecular dynamics (MD) simulations (for a total simulation time in excess of 0.2 micros) have been used to explore VSTx1 localization and interactions with zwitterionic (POPC) and with anionic (POPE/POPG) lipid bilayers. In particular, three series of MD simulations have been used to explore the net drift of VSTx1 relative to the center of a bilayer, starting from different locations of the toxin. The preferred location of the toxin is at the membrane/water interface. Although there are differences between POPC and POPE/POPG bilayers, in both cases the toxin forms favorable interactions at the interface, maximizing H-bonding to lipid headgroups and to water molecules while retaining interactions with the hydrophobic core of the bilayer. A 30 ns unrestrained simulation reveals dynamic partitioning of VSTx1 into the interface of a POPC bilayer. The preferential location of VSTx1 at the interface is discussed in the context of Kv channel gating models and provides support for a mode of action in which the toxin interacts with the Kv voltage sensor "paddle" formed by the S3 and S4 helices.  相似文献   

10.
We show that the activity of an ion channel is correlated with the phase state of the lipid bilayer hosting the channel. By measuring unitary conductance, dwell times, and open probability of the K+ channel KcsA as a function of temperature in lipid bilayers composed of POPE and POPG in different relative proportions, we obtain that all those properties show a trend inversion when the bilayer is in the transition region between the liquid-disordered and the solid-ordered phase. These data suggest that the physical properties of the lipid bilayer influence ion channel activity likely via a fine-tuning of its conformations. In a more general interpretative framework, we suggest that other parameters such as pH, ionic strength, and the action of amphiphilic drugs can affect the physical behavior of the lipid bilayer in a fashion similar to temperature changes resulting in functional changes of transmembrane proteins.  相似文献   

11.
Regulation of membrane protein functions due to hydrophobic coupling with a lipid bilayer has been investigated. An energy formula describing interactions between lipid bilayer and integral ion channels with different structures, which is based on the screened Coulomb interaction approximation, has been developed. Here the interaction energy is represented as being due to charge-based interactions between channel and lipid bilayer. The hydrophobic bilayer thickness channel length mismatch is found to induce channel destabilization exponentially while negative lipid curvature linearly. Experimental parameters related to channel dynamics are consistent with theoretical predictions. To measure comparable energy parameters directly in the system and to elucidate the mechanism at an atomistic level we performed molecular dynamics (MD) simulations of the ion channel forming peptide–lipid complexes. MD simulations indicate that peptides and lipids experience electrostatic and van der Waals interactions for short period of time when found within each other’s proximity. The energies from these two interactions are found to be similar to the energies derived theoretically using the screened Coulomb and the van der Waals interactions between peptides (in ion channel) and lipids (in lipid bilayer) due to mainly their charge properties. The results of in silico MD studies taken together with experimental observable parameters and theoretical energetic predictions suggest that the peptides induce ion channels inside lipid membranes due to peptide–lipid physical interactions. This study provides a new insight helping better understand of the underlying mechanisms of membrane protein functions in cell membrane leading to important biological implications.  相似文献   

12.
Water/Ion NMR Detected – Phospholipid Vesicle Permeability Assay (WIND-PVPA), is presented as a novel, straightforward and automatable method to assess lipid barrier integrity in vitro. The apparent permeability constants of water- and ions across the PVPA barriers are determined in a one-pot experiment under the influence of membrane-active guest molecules. NMR spectroscopy is used to quantify the water directly (D2O) and the ions indirectly (complexed with EDTA) as a function of time. WIND-PVPA is demonstrated using four anti-microbial peptides, to show that membrane active molecules can be differentiated by their disruptive influence on the PVPA system. The results obtained are compared with explicit molecular dynamics simulations of lipid bilayers, AMPs, water and salt, where the motions of all individual water molecules relative to the lipid bilayer are monitored over the course of the simulations, allowing the calculation of theoretical apparent permeability constants of the corresponding single bilayer systems.Proof-of-principle is presented that WIND-PVPA can be used to evaluate the lipid barrier destabilizing effect of active guest molecules by measuring changes in passive water- and ion permeabilities upon exposure. The method is highly flexible in terms of barrier composition, choice of probes and membrane active compounds.  相似文献   

13.
Although general anesthetics are clinically important and widely used, their molecular mechanisms of action remain poorly understood. Volatile anesthetics such as isoflurane (ISO) are thought to alter neuronal function by depressing excitatory and facilitating inhibitory neurotransmission through direct interactions with specific protein targets, including voltage-gated sodium channels (Nav). Many anesthetics alter lipid bilayer properties, suggesting that ion channel function might also be altered indirectly through effects on the lipid bilayer. We compared the effects of ISO and of a series of fluorobenzene (FB) model volatile anesthetics on Nav function and lipid bilayer properties. We examined the effects of these agents on Nav in neuronal cells using whole-cell electrophysiology, and on lipid bilayer properties using a gramicidin-based fluorescence assay, which is a functional assay for detecting changes in lipid bilayer properties sensed by a bilayer-spanning ion channel. At clinically relevant concentrations (defined by the minimum alveolar concentration), both the FBs and ISO produced prepulse-dependent inhibition of Nav and shifted the voltage dependence of inactivation toward more hyperpolarized potentials without affecting lipid bilayer properties, as sensed by gramicidin channels. Only at supra-anesthetic (toxic) concentrations did ISO alter lipid bilayer properties. These results suggest that clinically relevant concentrations of volatile anesthetics alter Nav function through direct interactions with the channel protein with little, if any, contribution from changes in bulk lipid bilayer properties. Our findings further suggest that changes in lipid bilayer properties are not involved in clinical anesthesia.  相似文献   

14.
Jang H  Ma B  Lal R  Nussinov R 《Biophysical journal》2008,95(10):4631-4642
Antimicrobial peptides (AMPs) induce cytotoxicity by altering membrane permeability. The electrical properties of membrane-associated AMPs as well as their cellular effects have been extensively documented; however their three-dimensional structure is poorly understood. Gaining insight into channel structures is important to the understanding of the protegrin-1 (PG-1) and other AMP cytolytic mechanisms, and to antibiotics design. We studied the β-sheet channels morphology using molecular dynamics simulations. We modeled PG-1 channels as intrinsic barrel-stave and toroidal membrane pores, and simulated them in zwitterionic and anionic lipid bilayers. PG-1 channels consist of eight β-hairpins in a consecutive NCCN (N and C represent the β-hairpin's N- and C-termini) packing organization yielding antiparallel and parallel β-sheet channels. Both channels preserve the toroidal, but not the barrel-stave pores. The two lipid leaflets of the bilayer bend toward each other at the channels’ edges, producing a semitoroidal pore with the outward-pointing hydrophobic residues preventing the polar lipid headgroups from moving to the bilayer center. In all simulated lipid environments, PG-1 channels divide into four or five β-sheet subunits consisting of single or dimeric β-hairpins. The channel morphology with subunit organization is consistent with the four to five subunits observed by NMR in the POPE/POPG bilayer. Remarkably, a β-sheet subunit channel motif is in agreement with Alzheimer ion channels modeled using the universal U-shape β-strand-turn-β-strand structure, as well as with high resolution atomic force microscopy images of β-amyloid channels with four to six subunits. Consistent with the toxic β-amyloid channels that are ion-conducting, the PG-1 channels permeate anions.  相似文献   

15.
Chlorhexidine (CHX) is an effective anti-bacterial agent whose mode of action is thought to be the disruption of the cell membrane. It is known to partition into phospholipid bilayers of aqueous model-membrane preparations. Neutron diffraction data taken at 36 °C on the location of CHX in phosphatidylcholine (PC) bilayers is presented. The center of mass of the deuterated hydrocarbon chain of CHX is found to reside 16 Å from the center of the bilayer in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (14:0–14:0 PC). This places the drug near the glycerol backbone of the lipid, and suggests a mode of action whereby the molecule is bent in half and inserts wedge-like into the lipid matrix. This mechanism is distinct from detergent-like mechanisms of membrane disruption and more similar to some anti-microbial peptide action, where peptides insert obliquely into the bilayer headgroup region to disrupt its structure.  相似文献   

16.
Carotenoids play an important role in the protection of biomembranes against oxidative damage. Their function depends on the surroundings and the organization of the lipid membrane they are embedded in. Carotenoids are located parallel or perpendicular to the surface of the lipid bilayer. The influence of carotenoids on the organization of the lipid bilayer in the stratum corneum has not been thoroughly considered. Here, the orientation of the exemplary cutaneous carotenoids lycopene and zeaxanthin in a hydrated ceramide NS24 bilayer model and the influence of carotenoids on the lateral organization of the lipid bilayer model were studied by means of molecular dynamics simulations for 32 °C and 37 °C. The results confirm that lycopene is located parallel and zeaxanthin perpendicular to the surface of the lipid bilayer. The lycopene-loaded lipid bilayer appeared to have a strong orthorhombic organization, while zeaxanthin-loaded and pure lipid bilayers were organized in a disordered hexagonal-like and liquid-like state, respectively. The effect is stronger at 32 °C compared to 37 °C based on p-values. Therefore, it was assumed that carotenoids without hydroxyl polar groups in their structure facilitate the formation of the orthorhombic organization of lipids, which provides the skin barrier function. It was shown that the distance between carotenoid atoms matched the distance between atoms in the lipids, indicating that parallel located carotenoids without hydroxyl groups serve as a skeleton for lipid membranes inside the lamellae. The obtained results provide reasonable prediction of the overall qualitative properties of lipid model systems and show the importance of parallel-oriented carotenoids in the development and maintenance of the skin barrier function.  相似文献   

17.
Planar lipid bilayers suspended in apertures provide a controlled environment for ion channel studies. However, short lifetimes and poor mechanical stability of suspended bilayers limit the experimental throughput of bilayer electrophysiology experiments. Although bilayers are more stable in smaller apertures, ion channel incorporation through vesicle fusion with the suspended bilayer becomes increasingly difficult. In an alternative bilayer stabilization approach, we have developed shaped apertures in SU8 photoresist that have tapered sidewalls and a minimum diameter between 60 and 100 μm. Bilayers formed at the thin tip of these shaped apertures, either with the painting or the folding method, display drastically increased lifetimes, typically >20 h, and mechanical stability, being able to withstand extensive perturbation of the buffer solution. Single-channel electrical recordings of the peptide alamethicin and of the proteoliposome-delivered potassium channel KcsA demonstrate channel conductance with low noise, made possible by the small capacitance of the 50 μm thick SU8 septum, which is only thinned around the aperture, and unimpeded proteoliposome fusion, enabled by the large aperture diameter. We anticipate that these shaped apertures with micrometer edge thickness can substantially enhance the throughput of channel characterization by bilayer lipid membrane electrophysiology, especially in combination with automated parallel bilayer platforms.  相似文献   

18.
The interaction of a spin-labeled lysophosphatidylcholine analog with intact and bromelain-treated influenza viruses as well as with the bromelain-solubilized hemagglutinin ectodomain has been studied. The inhibition of fusion of influenza viruses with erythrocytes by the lysophosphatidylcholine analog was similar to that observed for non-labeled lysophosphatidylcholine. Only a weak interaction of the lysophosphatidylcholine analog with the hemagglutinin ectodomain was observed even upon triggering the conformational change of the ectodomain at a low pH. A significant interaction of spin-labeled lysophosphatidylcholine with the hemagglutinin ectodomain of intact viruses was observed neither at neutral nor at low pH, whereas a strong interaction of the lipid analog with the viral lipid bilayer was evident. We suggest that the high number of lipid binding sites of the virus bilayer and their affinity compete efficiently with binding sites of the hemagglutinin ectodomain. We conclude that the inhibition of influenza virus fusion by lysolipids is not mediated by binding to the hemagglutinin ectodomain, preventing its interaction with the target membrane. The results unambiguously argue for an inhibition mechanism based on the action of lysolipid inserted into the lipid bilayer.  相似文献   

19.
The rapid emergence and subsequent spread of the novel 2009 Influenza A/H1N1 virus (2009 H1N1) has prompted the World Health Organization to declare the first pandemic of the 21st century, highlighting the threat of influenza to public health and healthcare systems. Widespread resistance to both classes of influenza antivirals (adamantanes and neuraminidase inhibitors) occurs in both pandemic and seasonal viruses, rendering these drugs to be of marginal utility in the treatment modality. Worldwide, virtually all 2009 H1N1 and seasonal H3N2 strains are resistant to the adamantanes (rimantadine and amantadine), and the majority of seasonal H1N1 strains are resistant to oseltamivir, the most widely prescribed neuraminidase inhibitor (NAI). To address the need for more effective therapy, we evaluated the in vitro activity of a triple combination antiviral drug (TCAD) regimen composed of drugs with different mechanisms of action against drug-resistant seasonal and 2009 H1N1 influenza viruses. Amantadine, ribavirin, and oseltamivir, alone and in combination, were tested against amantadine- and oseltamivir-resistant influenza A viruses using an in vitro infection model in MDCK cells. Our data show that the triple combination was highly synergistic against drug-resistant viruses, and the synergy of the triple combination was significantly greater than the synergy of any double combination tested (P<0.05), including the combination of two NAIs. Surprisingly, amantadine and oseltamivir contributed to the antiviral activity of the TCAD regimen against amantadine- and oseltamivir-resistant viruses, respectively, at concentrations where they had no activity as single agents, and at concentrations that were clinically achievable. Our data demonstrate that the TCAD regimen composed of amantadine, ribavirin, and oseltamivir is highly synergistic against resistant viruses, including 2009 H1N1. The TCAD regimen overcomes baseline drug resistance to both classes of approved influenza antivirals, and thus may represent a highly active antiviral therapy for seasonal and pandemic influenza.  相似文献   

20.
Fattyacids and other negatively charged single-chain lipids increaselarge-conductance Ca2+-activated K+(BKCa) channel activity, whereas sphingosine and otherpositively charged single-chain lipids suppress activity. Because thesemolecules are effective on both inside-out and outside-out patches andbecause they can flip across the bilayer, the location of their site of action is unclear. To identify the site of action of charged lipids onthis channel, we used two compounds that are unlikely to flip acrossthe lipid bilayer. Palmitoyl coenzyme A (PCoA) was used to identify thesite of action of negatively charged lipids, and a positively chargedmyristoylated pentapeptide (myr-KPRPK) was used to investigate the siteof action of positively charged lipids. The effect of these compoundson channel activity was studied in excised patches using patch-clamptechniques. In "normal" ionic strength solutions and in experimentswhere high-ionic strength solutions were used to shield membranesurface charge, PCoA increased channel activity only when applied tooutside-out patches, suggesting that the site of action of negativelycharged lipids is located on the outer surface of the membrane. Adecrease in activity, similar to that of other positively chargedlipids, was observed only when myr-KPRPK was applied to outside-outpatches, suggesting that positively charged lipids suppress activity byalso acting on the outer membrane surface. Some channel blockadeeffects of myr-KPRPK and KPRPK are also described. The sidedness ofaction suggests that modulation of channel activity by single-chainlipids can occur by their interaction with the channel protein.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号