首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purification and characterization of the buffalo liver microsomal transacetylase (TAase) catalyzing the transfer of acetyl groups from a model acetoxy drug: 7,8-diacetoxy-4-methylcoumarin (DAMC) to GST3–3 has been described here. The enzyme was routinely assayed using DAMC and cytosolic GST as the substrates and was partially purified from microsomes of the buffalo liver. The enzyme was found to have approximate molecular of weight 65 kDa. The action of TAase and DAMC on liver cytosolic GST resulted in the formation of monoacetoxymonohydroxy-4-methylcoumarin (MAMHC) and 7,8-dihydroxy-4-methylcoumarin (DHMC), although the former was the major metabolite. The buffalo liver microsomal TAase exhibited hyperbolic kinetics and yielded Km (1667 μM) and Vmax (192 units) when the concentration of DAMC was varied keeping the concentration of GST constant. After having characterized the nature of the substrates and a product of the TAase-catalyzed reaction, we set out to identify the acetylated protein which is another product of the reaction. GST3–3 was used as a model protein substrate for the action of TAase using DAMC as the acetyl donor. The subunit of control and modified GST3–3 were separated by SDS-polyacrylamide gel electrophoresis (PAGE) and digested with trypsin. The tryptic peptides were extracted from the gel pieces and analyzed by matrix assisted laser desorption/ionization–time of flight–mass spectrometry (MALDI-TOFMS). The data search for calibrated and labeled mass peaks of peptides was performed on the Matrix Science Server using the search engine Mascot. The peptide maps so obtained covered 97% of the GST3–3 sequence. On comparison of MALDI peptide maps of modified and control GST, seven new peaks were recognized corresponding to the potentially acetylated peptides in peptide map. The mass value of each of them was 42 Da higher than the theoretical mass of a non-modified GST3–3 tryptic peptide, strongly suggesting acetylation. By examining the fragmentation patterns and by comparing experimental and predicted values for MS/MS daughter ions, the identity of the seven acetylated GST tryptic peptides could be confirmed by the application of LC/MS/MS. In the modified GST, N-terminal proline and six lysines (Lys51, Lys82, Lys123, Lsy181, Lys191 and Lys210) were found to be acetylated. The structure of acetylated GST revealed that the lysines that underwent acetylation were peripheral in positions.  相似文献   

2.
A phage-display library of random peptides is a combinatorial experimental technique that can be harnessed for studying antibody–antigen interactions. In this technique, a phage peptide library is scanned against an antibody molecule to obtain a set of peptides that are bound by the antibody with high affinity. This set of peptides is regarded as mimicking the genuine epitope of the antibody's interacting antigen and can be used to define it. Here we present PepSurf, an algorithm for mapping a set of affinity-selected peptides onto the solved structure of the antigen. The problem of epitope mapping is converted into the task of aligning a set of query peptides to a graph representing the surface of the antigen. The best match of each peptide is found by aligning it against virtually all possible paths in the graph. Following a clustering step, which combines the most significant matches, a predicted epitope is inferred. We show that PepSurf accurately predicts the epitope in four cases for which the epitope is known from a solved antibody–antigen co-crystal complex. We further examine the capabilities of PepSurf for predicting other types of protein–protein interfaces. The performance of PepSurf is compared to other available epitope mapping programs.  相似文献   

3.
Intensive studies have demonstrated that there are many antimicrobial peptides in amphibian skins. Three novel antimicrobial peptides were identified from the skin of the frog, Rana shuchinae. They are named shuchins 3–5. Their sequences were determined as KAYSMPRCKGGFRAVMCWL-NH2, KAYSTPRCKGLFRALMCWL-NH2, and KAYSMPRCKYLFRAVLCWL-NH2 by Edman degradation and mass spectrometry analysis, respectively. They are composed of 19 amino acids (aa) with unique sequences. BLAST search indicated that they showed no similarity to any known peptides or proteins. They are a novel family of antimicrobial peptide. These peptides showed antimicrobial activities against all of tested microorganisms including Gram-positive bacteria, Gram-negative bacteria and fungi. The cDNAs encoding precursors of these peptides were cloned from the skin cDNA library of R. shuchinae. The precursors are composed of 64 amino acid residues including predicted signal peptides, acidic spacer peptides, and mature antimicrobial peptides. The current work identified a novel antimicrobial peptide family.  相似文献   

4.
Typically, detection of protein sequences in collision-induced dissociation (CID) tandem MS (MS2) dataset is performed by mapping identified peptide ions back to protein sequence by using the protein database search (PDS) engine. Finding a particular peptide sequence of interest in CID MS2 records very often requires manual evaluation of the spectrum, regardless of whether the peptide-associated MS2 scan is identified by PDS algorithm or not. We have developed a compact cross-platform database-free command-line utility, pepgrep, which helps to find an MS2 fingerprint for a selected peptide sequence by pattern-matching of modelled MS2 data using Peptide-to-MS2 scoring algorithm. pepgrep can incorporate dozens of mass offsets corresponding to a variety of post-translational modifications (PTMs) into the algorithm. Decoy peptide sequences are used with the tested peptide sequence to reduce false-positive results. The engine is capable of screening an MS2 data file at a high rate when using a cluster computing environment. The matched MS2 spectrum can be displayed by using built-in graphical application programming interface (API) or optionally recorded to file. Using this algorithm, we were able to find extra peptide sequences in studied CID spectra that were missed by PDS identification. Also we found pepgrep especially useful for examining a CID of small fractions of peptides resulting from, for example, affinity purification techniques. The peptide sequences in such samples are less likely to be positively identified by using routine protein-centric algorithm implemented in PDS. The software is freely available at http://bsproteomics.essex.ac.uk:8080/data/download/pepgrep-1.4.tgz.  相似文献   

5.
Calmodulin (CaM) is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells in a calcium-dependent manner. CaM has been proposed to be functionally distinct from the S100 proteins, a related family of eukaryotic calcium-binding proteins. Previously, it was demonstrated that peptides derived from the actin-capping protein, TRTK12, and the tumor-suppressor protein, p53, interact with multiple members of the S100 proteins. To test the specificity of these peptides, they were screened using isothermal titration calorimetry against 16 members of the human S100 protein family, as well as CaM, which served as a negative control. Interestingly, both the TRTK12 and p53 peptides were found to interact with CaM. These interactions were further confirmed by both fluorescence and nuclear magnetic resonance spectroscopies. These peptides have distinct sequences from the known CaM target sequences. The TRTK12 peptide was found to independently interact with both CaM domains and bind with a stoichiometry of 2:1 and dissociations constants Kd,C-term = 2 ± 1 µM and Kd,N-term = 14 ± 1 µM. In contrast, the p53 peptide was found to interact only with the C-terminal domain of CaM, Kd,C-term =2 ± 1 µM, 25°C. Using NMR spectroscopy, the locations of the peptide binding sites were mapped onto the structure of CaM. The binding sites for both peptides were found to overlap with the binding interface for previously identified targets on both domains of CaM. This study demonstrates the plasticity of CaM in target binding and may suggest a possible overlap in target specificity between CaM and the S100 proteins.  相似文献   

6.
The capacity of platelets to form a thrombus is mediated by integrin αIIbβ3. The cytoplasmic tail of αIIb contains a highly conserved motif, 989KVGFFKR995, which plays a critical role in regulating integrin activation and acts as a recognition site for various intracellular proteins, e.g. CIB1, PP1, ICln and RN181. Previously, we demonstrated that a cell-permeable integrin-derived activating (IDA) peptide, KVGFFKR, induces platelet activation, whereas an integrin-derived inhibitory (IDI) peptide, KVGAAKR, is antithrombotic. To elucidate the molecular mechanism underlying these opposite effects we investigate the affinity of known integrin αIIb binding proteins for the two immobilized peptides in dependence on the activation state of platelets by means of peptide-affinity chromatography, blotting techniques and protein:peptide docking studies.Our results provide a model for the inhibition of ICln interaction with the integrin in activated platelets by the IDI-peptide. Thus, ICln:IDI-peptide interaction profiles can have a pivotal purpose in the search for consensus pharmacophores specifically inhibiting ICln function in platelets potentially leading to the development of integrin-derived antithrombotic drugs.  相似文献   

7.
A new in silico method has been developed that automatically identifies peptide sequences that can bind to targets of known three‐dimensional structure. The method is potentially faster and more economical than traditional methods of raising antibodies by means of hybridomas or biopanning technology. The current algorithm creates an initial peptide library that is either completely random or that is constrained by the user. This library represents only a small fraction of possible sequence space and the peptides are created with a specified torsional geometry. The library is used as input to any number of available molecular docking programs and the library is docked and scored. The final rank ordering is then used to create a new library by constraining that library to the sequence conservation pattern deduced from the top N‐scoring peptides in the first round. Successive rounds of screening, scoring, and new library creation ultimately results in the system converging to a final solution set of peptides. To test the method, a family of novel peptides that can bind to, and inhibit the enzyme Deoxyribonuclease I has been discovered. The peptides inhibit the enzyme either alone or when placed into a protein backbone structure as has been confirmed experimentally. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
GABAB receptor is a G protein-coupled receptor for GABA and drug target for neurological and psychiatric disorders. From the analysis of GTPγS binding assay, we found that a synthesized peptide (GABAb: ETKSVSTEKINDHR) corresponding to the intracellular third loop region of metabotropic GABAB receptor could activate Gi protein α subunit directly. The three dimensional molecular structure of the peptide in SDS-d25 micelles was determined by 2D 1H-NMR spectroscopy. GABAb peptide formed an α helical structure and a positive charge cluster at the C-terminal site. These structural features were also found in several other G protein activating peptides. From the comparison among these peptides, we found that peptides with high helical content show the high activity.  相似文献   

9.
In this paper, an algorithm for the pattern recognition of secondary structure of proteins is proposed. The procedure simultaneously evaluates the contribution of all the residues of a given peptide to its conformation. By means of the algorithm it is possible to select from a universe of well known proteins the most representative alpha-helix and beta-structure peptides, and to use these peptides, as screening matrices to define the unknown structure of any peptide.  相似文献   

10.
The Escherichia coli peptide binding protein OppA is an essential component of the oligopeptide transporter Opp. Based on studies on its orthologue from Salmonella typhimurium, it has been proposed that OppA binds peptides between two and five amino acids long, with no apparent sequence selectivity. Here, we studied peptide binding to E. coli OppA directly and show that the protein has an unexpected preference for basic peptides. OppA was expressed in the periplasm, where it bound to available peptides. The protein was purified in complex with tightly bound peptides. The crystal structure (up to 2.0 Å) of OppA liganded with the peptides indicated that the protein has a preference for peptides containing a lysine. Mass spectrometry analysis of the bound peptides showed that peptides between two and five amino acids long bind to the protein and indeed hinted at a preference for positively charged peptides. The preference of OppA for peptides with basic residues, in particular lysines, was corroborated by binding studies with peptides of defined sequence using isothermal titration calorimetry and intrinsic protein fluorescence titration. The protein bound tripeptides and tetrapeptides containing positively charged residues with high affinity, whereas related peptides without lysines/arginines were bound with low affinity. A structure of OppA in an open conformation in the absence of ligands was also determined to 2.0 Å, revealing that the initial binding site displays a negative surface charge, consistent with the observed preference for positively charged peptides. Taken together, E. coli OppA appears to have a preference for basic peptides.  相似文献   

11.
β-Rich self-assembly is a major structural class of polypeptides, but still little is known about its atomic structures and biophysical properties. Major impediments for structural and biophysical studies of peptide self-assemblies include their insolubility and heterogeneous composition. We have developed a model system, termed peptide self-assembly mimic (PSAM), based on the single-layer β-sheet of Borrelia outer surface protein A. PSAM allows for the capture of a defined number of self-assembly-like peptide repeats within a water-soluble protein, making structural and energetic studies possible. In this work, we extend our PSAM approach to a highly hydrophobic peptide sequence. We show that a penta-Ile peptide (Ile5), which is insoluble and forms β-rich self-assemblies in aqueous solution, can be captured within the PSAM scaffold in a form capable of self-assembly. The 1.1-Å crystal structure revealed that the Ile5 stretch forms a highly regular β-strand within this flat β-sheet. Self-assembly models built with multiple copies of the crystal structure of the Ile5 peptide segment showed no steric conflict, indicating that this conformation represents an assembly-competent form. The PSAM retained high conformational stability, suggesting that the flat β-strand of the Ile5 stretch primed for self-assembly is a low-energy conformation of the Ile5 stretch and rationalizing its high propensity for self-assembly. The ability of the PSAM to “solubilize” an otherwise insoluble peptide stretch suggests the potential of the PSAM approach to the characterization of self-assembling peptides.  相似文献   

12.
The human multidrug resistance protein MRP1 (or ABCC1) is one of the most important members of the large ABC transporter family, in terms of both its biological (tissue defense) and pharmacological functions. Many studies have investigated the function of MRP1, but structural data remain scarce for this protein. We investigated the structure and dynamics of predicted transmembrane fragment 17 (TM17, from Ala1227 to Ser1251), which contains a single Trp residue (W1246) involved in MRP1 substrate specificity and transport function. We synthesized TM17 and a modified peptide in which Ala1227 was replaced by a charged Lys residue. Both peptides were readily solubilized in dodecylmaltoside (DM) or dodecylphosphocholine (DPC) micelles, as membrane mimics. The interaction of these peptides with DM or DPC micelles was studied by steady-state and time-resolved Trp fluorescence spectroscopy, including experiments in which Trp was quenched by acrylamide or by two brominated analogs of DM. The secondary structure of these peptides was determined by circular dichroism. Overall, the results obtained indicated significant structuring (∼50% α-helix) of TM17 in the presence of either DM or DPC micelles as compared to buffer. A main interfacial location of TM17 is proposed, based on significant accessibility of Trp1246 to brominated alkyl chains of DM and/or acrylamide. The comparison of various fluorescence parameters including λmax, lifetime distributions and Trp rotational mobility with those determined for model fluorescent transmembrane helices in the same detergents is also consistent with the interfacial location of TM17. We therefore suggest that TM17 intrinsic properties may be insufficient for its transmembrane insertion as proposed by the MRP1 consensus topological model. This insertion may also be controlled by additional constraints such as interactions with other TM domains and its position in the protein sequence. The particular pattern of behavior of this predicted transmembrane peptide may be the hallmark of a fragment involved in substrate transport.  相似文献   

13.
Cationic cell-penetrating peptides have been widely used to enhance the intracellular delivery of various types of cargoes, such as drugs and proteins. These reagents are chemically similar to the multi-basic peptides that are known to be potent proprotein convertase inhibitors. Here, we report that both HIV-1 TAT47-57 peptide and the Chariot reagent are micromolar inhibitors of furin activity in vitro. In agreement, HIV-1 TAT47-57 reduced HT1080 cell migration, thought to be mediated by proprotein convertases, by 25%. In addition, cyclic polyarginine peptides containing hydrophobic moieties which have been previously used as transfection reagents also exhibited potent furin inhibition in vitro and also inhibited intracellular convertases. Our finding that cationic cell-penetrating peptides exert potent effects on cellular convertase activity should be taken into account when biological effects are assessed.  相似文献   

14.
The conversion of a soluble protein into β-sheet-rich oligomeric structures and further fiber formation are critical steps in the pathogenesis of the group of human diseases known as amyloidoses. Drugs that interfere with this process may thus be able to prevent and/or cure these diseases. Recent results have shown that short amino acid stretches can provide most of the driving force needed to trigger amyloid formation of a protein. These evidence suggest that compounds that specifically bind to peptides synthesized upon the sequence of such amyloidogenic protein stretches might also be able to inhibit amyloid formation of the corresponding full-length protein and, likely, amyloid-induced cytotoxicity as well. Here we present a general strategy to obtain d-peptides that specifically interact with protein amyloid stretches. The screening of a d-peptide combinatorial library for inhibitors of an amyloidogenic peptide designed de novo has allowed us to extract a set of empirical rules for the design of d-peptide inhibitors of any six-residue amyloidogenic stretch. d-peptides generated on these bases prevent amyloid formation and disassemble preformed fibrils of different amyloid hexapeptides identified in human amyloid proteins. In addition, they are also specific for their target sequence. The d-peptide designed here for the Alzheimer's Aβ1-42 peptide not only inhibits and disassembles amyloid material but also reduces Aβ1-42 amyloid-induced cytotoxicity in cell culture.  相似文献   

15.
16.
BackgroundBacterial infections represent a major worldwide health problem the antimicrobial peptides (AMPs) have been considered as potential alternative agents for treating these infections. Here we demonstrated the antimicrobial activity of EcDBS1R6, a peptide derived from a signal peptide sequence of Escherichia coli that we previously turned into an AMP by making changes through the Joker algorithm.MethodsAntimicrobial activity was measured by broth microdilution method. Membrane integrity was measured using fluorescent probes and through scanning electron microscopy imaging. A sliding window of truncated peptides was used to determine the EcDBS1R6 active core. Molecular dynamics in TFE/water environment was used to assess the EcDBS1R6 structure.ResultsSignal peptides are known to naturally interact with membranes; however, the modifications introduced by Joker transformed this peptide into a membrane-active agent capable of killing bacteria. The C-terminus was unable to fold into an α-helix whereas its fragments showed poor or no antimicrobial activity, suggesting that the EcDBS1R6 antibacterial core was located at the helical N-terminus, corresponding to the signal peptide portion of the parent peptide.ConclusionThe strategy of transforming signal peptides into AMPs appears to be promising and could be used to produce novel antimicrobial agents.General significanceThe process of transforming an inactive signal peptide into an antimicrobial peptide could open a new venue for creating new AMPs derived from signal peptides.  相似文献   

17.
The chloroplast coupling factor (CF1) was analyzed by gel electrophoresis in SDS and found to contain two major bands in equal amounts with mobilities corresponding to molecular weights of 62,000 and 57,000 and three minor bands of molecular weights 38,000, 21,000, and 14,000. The peptides were present in comparable amounts in many different preparations of the protein and, therefore, were thought not to be tightly bound contaminants. The interaction between these five peptides was shown to be noncovalent.Incubation of the enzyme with trypsin, under conditions which activate the latent ATPase, was found to cause selective digestion of the five peptides; the 62,000 Mr peptide was the most susceptible to digestion, while the 57,000 Mr peptide was most stable to trypsin. When chloroplast membranes were exposed to trypsin in the light to activate the postillumination Mg2+-dependent ATPase activity, EDTA extraction solubilized a protein fraction which contained the normal CF1 peptide pattern. Also, the membranes, when solubilized and chromatographed on SDS-gels did not show the disappearance of any band.The ATPase activity of the protein was highly susceptible to ionic strength, being 50% inhibited by monovalent salts at a concentration of 0.05 m.  相似文献   

18.
We found that a peptide (EP3a: TIKALVSRCRAKAAV) corresponding to the N-terminal site of the intracellular third loop of human prostaglandin EP3α receptor could activate G protein α-subunit directly. The activity was almost same as Mastoparan-X, a G protein activating peptide from wasp venom. The three-dimensional molecular structure of the peptide in SDS-d25 micelles was determined by 2D 1H NMR spectroscopy. The structure of EP3a consists of a positive charge cluster on the C-terminal helical site. The cluster was also found in several corresponding receptor peptides. Therefore, the positive charge cluster on the helical structure might play a crucial role in activation of G protein.  相似文献   

19.
20.
Hydroponically grown tomato plants (Lycopersicon esculentum P. Mill. cv Golden Boy) exposed to 100 micromolar cadmium sulfate produced metal-(γEC)nG peptide complexes containing acid-labile sulfur. The properties of the complexes resemble those of the cadmium-(γEC)nG peptide complexes from Schizosaccharomyces pombe and Candida glabrata known to contain a cadmium sulfide crystallite core. The crystallite is stabilized by a sheath of peptides of general structure (γGlu-Cys)n-Gly. The cadmium-peptide complexes of tomato contained predominantly peptides of n3, n4, and n5. spectroscopic analyses indicated that the tomato cadmium-sulfide-peptide complex contained CdS crystallite core particles smaller than 2.0 nanometers in diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号