首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligonucleotides modified by clinically ineffective trans-diamminedichloridoplatinum(II) (transplatin) have been shown to be effective modulators of gene expression. This is so because in some nucleotide sequences the 1,3-GNG intrastrand adducts formed by transplatin in double-helical DNA readily rearrange into interstrand cross-links so that they can cross-link the oligonucleotides to their targets. On the other hand, in a number of other sequences these intrastrand adducts are relatively stable, which represents the major difficulty in the clinical use of the antisense transplatin-modified oligonucleotides. Therefore, we examined in this study, the stability of 1,3-GNG intrastrand adducts in double-helical DNA formed by a new antitumor derivative of transplatin, trans-[Pt(CH3NH2)2Cl2], in the sequence contexts in which transplatin formed relatively stable intrastrand cross-links which did not readily rearranged into interstrand cross-links. We have found that 1,3-GNG intrastrand adducts in double-helical DNA formed by trans-[Pt(CH3NH2)2Cl2] even in such sequences readily rearrange into interstrand cross-links. This work also suggests that an enhanced frequency of intrastrand cross-links yielded by trans-[Pt(CH3NH2)2Cl2] is a consequence of the fact that these DNA lesions considerably distort double-helical DNA in far more sequence contexts than parent transplatin. Our results suggest that trans-[Pt(CH3NH2)2Cl2]-modified oligonucleotides represent promising candidates for new agents in antisense or antigene approach.  相似文献   

2.
In the reaction of the anticancer drug cis-diamminedichloroplatinum(II) (cis-DDP) with DNA, bifunctional intrastrand and interstrand cross-links are formed. In this work, we show that at 37 degrees C interstrand cross-links (ICL) are labile and rearrange into intrastrand cross-links. The ICL instability was first studied with a 10 base pairs (bp) double-stranded oligonucleotide containing a unique site-specific ICL resulting from chelation of the N7 position of two guanine residues on the opposite strands of DNA at the d(GC/GC) site by a cis-diammineplatinum(II) residue. The bonds between the platinum and the N7 of guanine residues within the interstrand adduct are cleaved. In 50 mM NaCl or NaClO4, this cleavage results in the formation of monofunctional adducts which subsequently form intrastrand cross-links. One cleavage reaction takes place per cross-linked duplex in either of both DNA strands. Whereas the starting cross-linked 10 bp duplex is hydrogen bonded, the two complementary DNA strands separate after the cleavage of the ICL. Under these conditions, the cleavage reaction is irreversible allowing its rate measurement (t1/2= 29+/-2 h) and closure of monofunctional adducts to intrastrand cross-links occurs within single-stranded DNA. Within a longer cross-linked oligonucleotide (20 bp), ICL are apparently more stable (t1/2= 120+/-12 h) as a consequense of monofunctional adducts closure back to ICL. We propose that the ICL cleavage is reversible in DNA and that these adducts rearrange finally into intrastrand cross-links. Our results could explain an 'ICL unhooking' in previously reported in vivo repair studies [Zhenet al. (1993)Carcinogenesis14, 919-924].  相似文献   

3.
The effects of major DNA intrastrand cross-links of antitumor dinuclear PtII complexes [{trans-PtCl(NH3)2}2-μ-{trans-(H2N(CH2)6NH2(CH2)2NH2(CH2)6NH2)}]4+ (1) and [{PtCl(DACH)}2-μ-{H2N(CH2)6NH2(CH2)2NH2(CH2)6NH2)}]4+ (2) (DACH is 1,2-diaminocyclohexane) on DNA stability were studied with emphasis on thermodynamic origins of that stability. Oligodeoxyribonucleotide duplexes containing the single 1,2, 1,3, or 1,5 intrastrand cross-links at guanine residues in the central TGGT, TGTGT, or TGTTTGT sequences, respectively, were prepared and analyzed by differential scanning calorimetry. The unfolding of the platinated duplexes was accompanied by unfavorable free energy terms. The efficiency of the cross-links to thermodynamically destabilize the duplex depended on the number of base pairs separating the platinated bases. The trend was 1,5→1,2→1,3 cross-link of 1 and 1,5→1,3→1,2 cross-link of 2. Interestingly, the results showed that the capability of the cross-links to reduce the thermodynamic stability of DNA (ΔG 2980) correlated with the extent of conformational distortions induced in DNA by various types of intrastrand cross-links of 1 or 2 determined by chemical probes of DNA conformation. We also examined the efficiency of the mammalian nucleotide excision repair systems to remove from DNA the intrastrand cross-links of 1 or 2. The efficiency of the excinucleases to remove the cross-links from DNA depended on the length of the cross-link; the trend was identical to that observed for the efficiency of the intrastrand cross-links to thermodynamically destabilize the duplex. Thus, the results are consistent with the thesis that an important factor that determines the susceptibility of the intrastrand cross-links of dinuclear platinum complexes 1 and 2 to be removed from DNA by nucleotide excision repair is the efficiency of these lesions to thermodynamically destabilize DNA.  相似文献   

4.
Raman spectroscopy was employed to characterize the perturbations to DNA conformation induced in DNA by two different intrastrand adducts of antitumor cis-diamminedichloroplatinum(II) (cisplatin), namely by its 1,2-GG or 1,3-GTG intrastrand cross-links. We examined short deoxyribooligonucleotide duplexes containing single, site-specific cross-link by Raman spectroscopy and assigned the spectral alterations to conformational changes induced in DNA by 1,2-GG or 1,3-GTG intrastrand CLs determined earlier by other biochemical and biophysical methods. The results confirmed significant perturbations to the B-form DNA backbone due to the intrastrand lesions and that several nucleotides changed their conformation from C2'-endo to C3'-endo. Evidence for a partial transition from B- to A-form was found in several regions of the Raman spectra as well. The spectra also confirmed the different and more extensive distortion induced in B-DNA by 1,3-GTG in comparison with 1,2-GG intrastrand CLs, consistent with their already known high resolution structures. The results of the present work demonstrate that Raman spectroscopy represents a suitable tool to provide insights into structural factors involved in the mechanisms underlying antitumor effects of platinum drugs.  相似文献   

5.
The reaction between trans-diamminedichloroplatinum(II) and single-stranded oligonucleotides containing the sequence d(GXG) (X being an adenine, cytosine or thymine residue) yields trans-[Pt(NH3)2[(GXG)-GN7,GN7]] intrastrand cross-links. These cross-links do not prevent the pairing of the platinated oligonucleotides with their complementary strands but they decrease the thermal stability of the duplexes. The thermal stability is not much affected by the chemical nature of the X residue and its complementary base. By gel electrophoresis, it is shown that the trans- [Pt(NH3)2[d(GTG)-GN7,GN7]] cross-link bends the DNA double helix (26 degrees) and unwinds it (45 degrees). The pairing of the platinated oligonucleotides with their complementary strands promotes the rearrangement of the 1,3-intrastrand cross-links into interstrand cross-links. At a given temperature, the nature of the X residue, its complementary base and of the base pairs adjacent to the adducts do not dramatically affect the rate of the reaction. To know whether trans-[Pt(NH3)2[d(GXG)-GN7,GN7]] cross-links do not rearrange in some sequences, the location of these adducts was searched in double-stranded DNA after reaction with trans-diamminedichloroplatinum(II) by means of the 3'-5' exonuclease activity of T4 DNA polymerase. At low level of platination, trans-[Pt(NH3)2[d(GXG)-GN7,GN7]] cross-links were not detected. Monofunctional adducts and interstrand cross-links were mainly formed. These results are discussed in relation with the clinical inefficiency of trans-diamminedichloroplatinum(II).  相似文献   

6.
To initiate studies designed to identify the mutagenic spectrum associated with butadiene diepoxide-induced N(2)-N(2) guanine intrastrand cross-links, site specifically adducted oligodeoxynucleotides were synthesized in which the adducted bases were centrally located within the context of the human ras 12 codon. The two stereospecifically modified DNAs and the corresponding unmodified DNA were ligated into a single-stranded M13mp7L2 vector and transfected into Escherichia coli. Both stereoisomeric forms (R, R and S,S) of the DNA cross-links resulted in very severely decreased plaque-forming ability, along with an increased mutagenic frequency for both single base substitutions and deletions compared with unadducted DNAs, with the S,S stereoisomer being the most mutagenic. Consistent with decreased plaque formation, in vitro replication of DNA templates containing the cross-links by the three major E. coli polymerases revealed replication blockage by both stereoisomeric forms of the cross-links. The same DNAs that were used for replication studies were also assembled into duplex DNAs and tested as substrates for the initiation of nucleotide excision repair by the E. coli UvrABC complex. UvrABC incised linear substrates containing these intrastrand cross-links with low efficiency, suggesting that these lesions may be inefficiently repaired by the nucleotide excision repair system.  相似文献   

7.
The DNA unwinding produced by specific adducts of the antitumor drug cis-diamminedichloroplatinum(II) has been quantitatively determined. Synthetic DNA duplex oligonucleotides of varying lengths with two base pair cohesive ends were synthesized and characterized that contained site-specific intrastrand N7-purine/N7-purine cross-links. Included are cis-[Pt(NH3)2[d(GpG)]], cis-[Pt(NH3)2(d(ApG)]], and cis-[Pt(NH3)2[d(GpTpG)]] adducts, respectively referred to as cis-GG, cis-AG, and cis-GTG. Local DNA distortions at the site of platination were amplified by polymerization of these monomers and quantitatively evaluated by using polyacrylamide gel electrophoresis. The extent of DNA unwinding was determined by systematically varying the interplatinum distance, or phasing, in polymers containing the adducts. The multimer that migrates most slowly gives the optimal phasing for cooperative bending, from which the degree of unwinding can be obtained. We find that the cis-GG and cis-AG adducts both unwind DNA by 13 degrees, while the cis-GTG adduct unwinds DNA by 23 degrees. In addition, experiments are presented that support previous studies revealing that a hinge joint forms at the sites of platination in DNA molecules containing trans-GTG adducts. On the basis of an analysis of the present and other published studies of site-specifically modified DNA, we propose that local duplex unwinding is a major determinant in the recognition of DNA damage by the Escherichia coli (A)BC excinuclease. In addition, local duplex unwinding of 13 degrees and bending by 35 degrees are shown to correlate well with the recognition of platinated DNA by a previously identified damage recognition protein (DRP) in human cells.  相似文献   

8.
Oxanine (Oxa), which is one of the major products generated from guanine by nitrosative oxidation and is as long-lived as Gua in DNA, has been thought to be one of the major causes for NO-induced DNA damage. In the present study, using several synthetic Oxa-containing oligodeoxynucleotides, biophysical stability and enzymatic recognition of Oxa was investigated in DNA strands. It was found that Oxa did not mediate marked distortion in the whole DNA structure although Oxa pairing with 4 normal bases decreased thermal stability of the DNA duplexes compared to Gua:Cyt base pair. Regarding the responses of the DNA-relevant enzymes to Oxa, it was determined that Oxa was recognized as Gua except that DNA polymerases incorporated Thy as well as Cyt opposite Oxa. These results imply that Oxa tends to behave as a kind of naturally occurring base, Gua and therefore, would be involved in the genotoxic and cytotoxic threats of NO in cellular system.  相似文献   

9.
The potential use of liposomes as a delivery system is still limited by the poor understanding of their interaction mechanisms with biological media. In the present work, interaction between bovine albumin (BA) and liposomes was studied using phase transition and dielectric measurements as well as solubilization process using non-ionic detergent octylglucoside (OG). After liposomes were incubated with diluted and concentrated BA, phase transition, characterizing the liposome membrane exhibited a shift towards higher temperatures, together with initiation of multiple phase transitions. The relaxation time of liposome membrane molecules also increased in a concentration-dependent manner. The solubilization profiles of incubated samples also showed remarkable changes, especially in beginning of solubilization stages. Moreover, amount of detergent needed to completely solubilize membrane was also increased. It was concluded that BA significantly altered the physical state of liposome membrane, which may be attributed to BA interaction with liposomes surface and/or by its incorporation within the bilayer membrane.  相似文献   

10.
Cisplatin (cis-diamminedichloroplatinum(II] is widely used in the treatment of various human tumours. A large body of experimental evidence indicates that the reaction of cisplatin with DNA is responsible for the cytostatic action of this drug. Several platinum-DNA adducts have been identified and their effect on the conformation of DNA has been investigated. Structural studies of platinum-DNA adducts now permit a reasonably good explanation of the biophysical properties of platinated DNA. Antitumouractive platinum compounds induce in DNA, at low levels of binding, local conformational alterations which have the character of non-denaturing distortions. It is likely that these changes occur in DNA due to the formation of intrastrand cross-links between two adjacent purine residues. On the other hand, the modification of DNA by antitumour-inactive complexes results in the formation of more severe local denaturation changes. Conformational alterations induced in DNA by antitumour-active platinum compounds may be reparable with greater difficulty than those induced by the inactive complexes. Alternatively, non-denaturation change induced in DNA by antitumour platinum drugs could represent more significant steric hindrance against DNA replication as compared with inactive complexes.  相似文献   

11.
This Special Issue of the European Biophysics Journal contains articles dealing with topics associated with a variety of biophysical studies of the cytoskeleton. These original peer-reviewed contributions derive from authors who were invited contributors to a meeting on “Molecular Biophysics of the Cytoskeleton” organised in August 1997 in Banff, Alberta, by Jack Tuszynski of the University of Alberta, Edmonton. Dr Tuszynski and I have been joint editors for this issue. The organisation of the papers runs from structural studies of individual proteins, their interactions and assembly properties; motor proteins, kinesin and dynein, and general properties of mechanochemical motility; physical and mechanical properties of cytoskeletal polymers, including flexibility and elasticity of microtubules, and diffusion within microtubules; modelling of actin networks, deformation and cellular locomotion.  相似文献   

12.
The stability of trans-(Pt(NH3)2[d(CGAG)-N7-G,N7-G]) adducts, resulting from cross-links between two guanine residues at d(CGAG) sites within single-stranded oligonucleotides by trans-diamminedichloro-platinum(II), has been studied under various conditions of temperature, salt and pH. The trans-(Pt(NH3)2[d(C GAG)-N7-G,N7-G]) cross-links rearrange into trans-(Pt(NH3)2[d(CGAG)-N3-C,N7-G]) cross-links. The rate of rearrangement is independent of pH, in the range 5-9, and of the nature and concentration of the salt (NaCl or NaCIO4) in the range 10-400 mM. The reaction rate depends upon temperature, the t1/2 values for the disappearance of the (G,G) intrastrand cross-link ranging from 120 h at 30 degrees C to 70 min at 80 degrees C. The linkage isomerization reaction occurs in oligonucleotides as short as the platinated tetramer d(CGAG). Replacement of the intervening residue A by T has no major effect on the reaction. The C residue adjacent to the adduct on the 5' side plays a key-role in the reaction; its replacement by a G, A or T residue prevents the reaction occuring. No rearrangement was observed with the C residue adjacent to the adduct on the 3' side. It is proposed that the linkage isomerization reaction results from a direct attack of the base residue on the platinum(II) square complex.  相似文献   

13.
Liposomes have been used as delivery vehicles for stabilizing drugs, overcoming barriers to cellular and tissue uptake, and for directing their contents toward specific sites in vivo. Chitosan is a biological macromolecule derived from crustacean shells and has several emerging applications in drug development, obesity control, and tissue engineering. In the present work, the interaction between chitosan and dipalmitoyl phosphatidylcholine (DPPC) liposomes was studied by transmission electron microscopy (TEM), zeta potential, solubilization using the nonionic detergent octylglucoside (OG), as well as Fourier transform infrared (FTIR) spectroscopy and viscosity measurements. The coating of DPPC liposomes by a chitosan layer was confirmed by electron microscope images and the zeta potential of liposomes. Coating of liposome by chitosan resulted in an increase in liposomal size by addition of a layer of 92 ± 27.1 nm. The liposomal zeta potential became increasingly positive as chitosan concentration increased from 0.1 to 0.3% w/v, then it held at a relatively constant value. The amount of detergent needed to completely solubilize the liposomal membrane was increased after coating of liposomes with chitosan, indicating an increased membrane resistance to the detergent and hence a change in the natural membrane permeation properties. In the analysis of FTIR spectra of DPPC, the symmetric and antisymmetric CH2 (at 2,800–3,000 cm−1) bands and the C=O (at 1,740 cm−1) stretching band were investigated in the absence and presence of the chitosan. It was concluded that appropriate combining of the liposomal and chitosan characteristics might be utilized for the improvement of the therapeutic efficacy of liposomes as a drug delivery system.  相似文献   

14.
15.
Colis LC  Raychaudhury P  Basu AK 《Biochemistry》2008,47(31):8070-8079
Comparative mutagenesis of gamma- or X-ray-induced tandem DNA lesions G[8,5-Me]T and T[5-Me,8]G intrastrand cross-links was investigated in simian (COS-7) and human embryonic (293T) kidney cells. For G[8,5-Me]T in 293T cells, 5.8% of progeny contained targeted base substitutions, whereas 10.0% showed semitargeted single-base substitutions. Of the targeted mutations, the G --> T mutation occurred with the highest frequency. The semitargeted mutations were detected up to two bases 5' and three bases 3' to the cross-link. The most prevalent semitargeted mutation was a C --> T transition immediately 5' to the G[8,5-Me]T cross-link. Frameshifts (4.6%) (mostly small deletions) and multiple-base substitutions (2.7%) also were detected. For the T[5-Me,8]G cross-link, a similar pattern of mutations was noted, but the mutational frequency was significantly higher than that of G[8,5-Me]T. Both targeted and semitargeted mutations occurred with a frequency of approximately 16%, and both included a dominant G --> T transversion. As in 293T cells, more than twice as many targeted mutations in COS cells occurred in T[5-Me,8]G (11.4%) as in G[8,5-Me]T (4.7%). Also, the level of semitargeted single-base substitutions 5' to the lesion was increased and 3' to the lesion decreased in T[5-Me,8]G relative to G[8,5-Me]T in COS cells. It appeared that the majority of the base substitutions at or near the cross-links resulted from incorporation of dAMP opposite the template base, in agreement with the so-called "A-rule". To determine if human polymerase eta (hpol eta) might be involved in the mutagenic bypass, an in vitro bypass study of G[8,5-Me]T in the same sequence was carried out, which showed that hpol eta can bypass the cross-link incorporating the correct dNMP opposite each cross-linked base. For G[8,5-Me]T, nucleotide incorporation by hpol eta was significantly different from that by yeast pol eta in that the latter was more error-prone opposite the cross-linked Gua. The incorporation of the correct nucleotide, dAMP, by hpol eta opposite cross-linked T was 3-5-fold more efficient than that of a wrong nucleotide, whereas incorporation of dCMP opposite the cross-linked G was 10-fold more efficient than that with dTMP. Therefore, the nucleotide incorporation pattern by hpol eta was not consistent with the observed cellular mutations. Nevertheless, at and near the lesion, hpol eta was more error-prone compared to a control template. The in vitro data suggest that translesion synthesis by another Y-family DNA polymerase and/or flawed participation of an accessory protein is a more likely scenario in the mutagenesis of these lesions in mammalian cells. However, hpol eta may play a role in correct bypass of the cross-links.  相似文献   

16.
The results presented describe the effects of various spectator ligands, attached to a platinum 1,2-intrastand d(GpG) cross-link in duplex DNA, on the binding of high mobility group box (HMGB) domains and the TATA-binding protein (TBP). In addition to cisplatin-modified DNA, 15-base pair DNA probes modified by [Pt(1R,2R-diaminocyclohexane)](2+), cis-[Pt(NH(3))(cyclohexylamine)](2+), [Pt(ethylenediamine)](2+), cis-[Pt(NH(3))(cyclobutylamine)](2+), and cis-[Pt(NH(3))(2-picoline)](2+) were examined. Electrophoretic mobility shift assays show that both the A and B domains of HMGB1 as well as TBP discriminate between different platinum-DNA adducts. HMGB1 domain A is the most sensitive to the nature of the spectator ligands on platinum. The effect of the spectator ligands on protein binding also depends highly on the base pairs flanking the platinated d(GpG) site. Double-stranded oligonucleotides containing the AG*G*C sequence, where the asterisks denote the sites of platination, with different spectator ligands are only moderately discriminated by the HMGB proteins and TBP, but the recognition of dsTG*G*A is highly dependent on the ligands. The effects of HMGB1 overexpression in a BG-1 ovarian cancer cell line, induced by steroid hormones, on the sensitivity of cells treated with [Pt(1R,2R-diaminocyclohexane)Cl(2)] and cis-[Pt(NH(3))(cyclohexylamine)Cl(2)] were also examined. The results suggest that HMGB1 protein levels influence the cellular processing of cis-[Pt(NH(3))- (cyclohexylamine)](2+), but not [Pt((1R,2R)-diaminocyclohexane)](2+), DNA lesions. This result is consistent with the observed binding of HMGB1a to platinum-modified dsTG*G*A probes but not with the binding affinity of HMGB1a and HMGB1 to platinum-damaged dsAG*G*C oligonucleotides. These experiments reinforce the importance of sequence context in platinum-DNA lesion recognition by cellular proteins.  相似文献   

17.
Repair of DNA interstrand cross-links   总被引:24,自引:0,他引:24  
DNA interstrand cross-links (ICLs) are very toxic to dividing cells, because they induce mutations, chromosomal rearrangements and cell death. Inducers of ICLs are important drugs in cancer treatment. We discuss the main properties of several classes of ICL agents and the types of damage they induce. The current insights in ICL repair in bacteria, yeast and mammalian cells are reviewed. An intriguing aspect of ICLs is that a number of multi-step DNA repair pathways including nucleotide excision repair, homologous recombination and post-replication/translesion repair all impinge on their repair. Furthermore, the breast cancer-associated proteins Brca1 and Brca2, the Fanconi anemia-associated FANC proteins, and cell cycle checkpoint proteins are involved in regulating the cellular response to ICLs. We depict several models that describe possible pathways for the repair or replicational bypass of ICLs.  相似文献   

18.
We have used three methods to study the formation and repair of intrastrand adducts and interstrand cross-links in the DNA of Chinese hamster ovary cells induced by the anticancer drug cis-diamminedichloroplatinum II (cisplatin). Using atomic absorption spectroscopy, we found that 21% of the total genomic cisplatin adducts were removed at 8 h and 42% at 24 h. We used ABC excinuclease digestion, coupled with out previously reported methodology to quantify DNA in specific genomic regions. These adducts were removed faster in the transcribed dihydrofolate reductase and c-myc genes compared to a noncoding fragment, a region containing the little or nontranscribed c-fos oncogene, and to the overall genome. Interstrand cross-links in specific sequences were quantified by Southern hybridization of denatured-renatured DNA separated on a neutral gel. We found that cross-links were removed more efficiently from the gene regions than intrastrand adducts and, at high levels of cross-linking, removal was similar from transcribed and from nontranscribed regions.  相似文献   

19.
Biophysical studies of mechanoreceptors   总被引:4,自引:0,他引:4  
Mechanoreception can be viewed as a series of sequential mechanical and ionic processes that take place in mechanosensitive end organs and in the terminals of the nerves that innervate them. Stimuli act on a transducer after being transmitted through some material having a combination of elastic and viscoelastic properties. Channels that open under membrane loading have recently been described in muscle cells and are presented as a model for transduction. When open these channels are cation specific. Ions passing through transducer channels depolarize a spike-initiating zone on the cell. These currents may also activate other conductances in the cell, so that the total generator current may have many components. In many mechanoreceptors, action potential initiation results in activation of an electrogenic Na+ pump at the spike-initiation zone, which modifies the threshold for subsequent action potentials. Action potentials initiated in the many branches of a single sensory axon interact at the branching point of the axon. The rules governing this interaction are complex. The above factors, together or separately, are responsible for the dynamic responses and adaptation observed in mechanoreceptors.  相似文献   

20.
A H Wang  Y G Gao  Y C Liaw  Y K Li 《Biochemistry》1991,30(16):3812-3815
Formaldehyde (HCHO) cross-links the anticancer drug daunorubicin (DAU) to DNA efficiently. When DAU is mixed with DNA hexamers, d(CGCGCG) and d(CGTDCG), in the presence of HCHO, stable covalent adducts of DNA are formed, as shown by the HPLC analyses. The major adducts are identical with the materials in the respective crystals which can be readily obtained from the 1:1 mixture of DAU-d(CGCGCG) and DAU-d(CGTDCG) plus HCHO, but not from the solution without HCHO. The high-resolution (1.5 A) X-ray crystal structure of those adducts shows unambiguously that they contain a covalent methylene bridge between the N3' of daunosamine and the N2 of the guanine or 2-aminoadenine. The perfect juxtaposition of the two amino groups in the minor groove of the complex provides a template for an efficient addition of HCHO. The methylene bridge does not perturb the conformation of the drug-DNA complex, when compared to the structure of DAU-d(CGTACG). The results suggest new approaches for synthesizing a new type of potential anticancer drug by attaching a reactive (e.g., alkylating) functional group at the N3' amino position of daunorubicin/doxorubicin. The stable drug-DNA adduct may be useful as probes for other biological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号