首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titin is a giant protein that determines the elasticity of striated muscle and is thought to play important roles in numerous regulatory processes. Previous studies have shown that titin's PEVK domain interacts with F-actin, thereby creating viscous forces of unknown magnitude that may modulate muscle contraction. Here we measured, with optical tweezers, the forces necessary to dissociate F-actin from individual molecules of recombinant PEVK fragments rich either in polyE or PPAK motifs. Rupture forces at a stretch rate of 250 nm/s displayed a wide, nonnormal distribution with a peak at approximately 8 pN in the case of both fragments. Dynamic force spectroscopy experiments revealed low spontaneous off-rates that were increased even by low forces. The loading-rate dependence of rupture force was biphasic for polyE in contrast with the monophasic response observed for PPAK. Analysis of the molecular lengths at which rupture occurred indicated that there are numerous actin-binding regions along the PEVK fragments' contour, suggesting that the PEVK domain is a promiscuous actin-binding partner. The complexity of PEVK-actin interaction points to an adaptable viscoelastic mechanism that safeguards sarcomeric structural integrity in the relaxed state and modulates thixotropic behavior during contraction.  相似文献   

2.
Compliance of bacterial polyhooks measured with optical tweezers.   总被引:3,自引:0,他引:3  
S M Block  D F Blair  H C Berg 《Cytometry》1991,12(6):492-496
In earlier work, a single-beam gradient force optical trap ("optical tweezers") was used to measure the torsional compliance of flagella in wild-type cells of Escherichia coli that had been tethered to glass by a single flagellum. This compliance was nonlinear, exhibiting a torsionally soft phase up to 180 degrees, followed by a torsionally rigid phase for larger angles. Values for the torsional spring constant in the soft phase were substantially less than estimates based on the rigidity determined for isolated flagellar filaments. It was suggested that the soft phase might correspond to wind-up of the flagellar hook, and the rigid phase to wind-up of the stiffer filament. Here, we have measured the torsional compliance of flagella on cells of an E. coli strain that produces abnormally long hooks but no filaments. The small-angle compliance of these cells, as determined from the elastic rebound of the cell body after wind-up and release, was found to be the same as for wild-type cells. This confirms that the small-angle compliance of wild-type cells is dominated by the response of the hook. Hook flexibility is likely to play a useful role in stabilizing the flagellar bundle.  相似文献   

3.
A recent publication in Biophysical Journal by Bianco et al. (“Interaction forces between F-actin and titin PEVK domain measured with optical tweezers”) shows that the PEVK domain of titin molecules interacts with F-actin. This newly discovered behavior could influence the mechanical properties of striated muscles, and Bianco et al. suggest that the interactions between actin and titin could modulate thixotropic behavior. In this Comment to the Editor, we suggest that the thixotropic properties of striated muscles in vivo are more likely to reflect dynamic changes in the proportion of myosin cross-bridges bound between the myofilaments.  相似文献   

4.
Muscle contraction is driven by the cyclical interaction of myosin with actin, coupled with ATP hydrolysis. Myosin attaches to actin, forming a crossbridge that produces force and movement as it tilts or rocks into subsequent bound states before finally detaching. It has been hypothesized that the kinetics of one or more of these mechanical transitions are dependent on load, allowing muscle to shorten quickly under low load, but to sustain tension economically, with slowly cycling crossbridges under high load conditions. The idea that muscle biochemistry depends on mechanical output is termed the 'Fenn effect'. However, the molecular details of how load affects the kinetics of a single crossbridge are unknown. Here, we describe a new technique based on optical tweezers to rapidly apply force to a single smooth muscle myosin crossbridge. The crossbridge produced movement in two phases that contribute 4 nm + 2 nm of displacement. Duration of the first phase depended in an exponential manner on the amplitude of applied load. Duration of the second phase was much less affected by load, but was significantly shorter at high ATP concentration. The effect of load on the lifetime of the bound crossbridge is to prolong binding when load is high, but to accelerate release when load is low or negative.  相似文献   

5.
The mechanical behavior of individual P pili of uropathogenic Escherichia coli has been investigated using optical tweezers. P pili, whose main part constitutes the PapA rod, composed of approximately 10(3) PapA subunits in a helical arrangement, are distributed over the bacterial surface and mediate adhesion to host cells. They are particularly important in the pathogenesis of E. coli colonizing the upper urinary tract and kidneys. A biological model system has been established for in situ measurements of the forces that occur during mechanical stretching of pili. A mathematical model of the force-versus-elongation behavior of an individual pilus has been developed. Three elongation regions of pili were identified. In region I, P pili stretch elastically, up to a relative elongation of 16 +/- 3%. The product of elasticity modulus and area of a P pilus, EA, was assessed to 154 +/- 20 pN (n=6). In region II, the quaternary structure of the PapA rod unfolds under a constant force of 27 +/- 2 pN (n approximately 100) by a sequential breaking of the interactions between adjacent layers of PapA subunits. This unfolding can elongate the pilus up to 7 +/- 2 times. In region III, pili elongate in a nonlinear manner as a result of stretching until the bond ruptures.  相似文献   

6.
To study the potential use of optical forces to manipulate chromosome movement, we have used a Nd:YAG laser at a wavelength of 1.06 microns focused into a phase contrast microscope. Metaphase and anaphase chromosomes were exposed while being monitored by video microscopy. The results indicated that when optical forces were applied to late-moving metaphase chromosomes on the side closest to the nearest spindle pole, the trapped chromosomes initiated movement to the metaphase plate. The chromosome velocities were two to eight times the normal rate depending on the chromosome size, geometry, and trapping site. At the initiation of anaphase, a pair of chromatids could be held by the optical trap and kept motionless throughout anaphase while the other pairs of chromatids separated and moved to opposite spindle poles. As a result, the trapped chromosome either was incorporated into one of the daughter cells or was lost in the cleavage furrow, or the two chromatids eventually separated and moved to their respective daughter cells. If the trap was removed at the beginning of anaphase B, the chromosome moved back to the poles. Our experiments demonstrate that the laser-induced optical force trap is a potential new technique to study noninvasively the mitotic spindle of living cells.  相似文献   

7.
A short review of the use of optical tweezers in fungal cell biological research is provided. First, we describe how optical tweezers work. Second, we review how they have been used in various experimental live-cell studies to manipulate intracellular organelles, hyphal growth and branching, and whole cells. Third, we indicate how optically trapped microbeads can be used for the localized delivery of chemicals or mechanical stimulation to cells, as well as permitting measurements of the growth forces generated by germ tubes. Finally, the effects of optical trapping on fungal cell viability and growth are assessed. Parts of this review were presented at the Mycological Society of Japan (MSJ) / British Mycological Society (BMS) Joint Symposium, “The new generation mycologists in Japan and the UK” held in Chiba, Japan on June 3, 2006.  相似文献   

8.
Stretching DNA with optical tweezers.   总被引:9,自引:2,他引:7  
M D Wang  H Yin  R Landick  J Gelles    S M Block 《Biophysical journal》1997,72(3):1335-1346
Force-extension (F-x) relationships were measured for single molecules of DNA under a variety of buffer conditions, using an optical trapping interferometer modified to incorporate feedback control. One end of a single DNA molecule was fixed to a coverglass surface by means of a stalled RNA polymerase complex. The other end was linked to a microscopic bead, which was captured and held in an optical trap. The DNA was subsequently stretched by moving the coverglass with respect to the trap using a piezo-driven stage, while the position of the bead was recorded at nanometer-scale resolution. An electronic feedback circuit was activated to prevent bead movement beyond a preset clamping point by modulating the light intensity, altering the trap stiffness dynamically. This arrangement permits rapid determination of the F-x relationship for individual DNA molecules as short as -1 micron with unprecedented accuracy, subjected to both low (approximately 0.1 pN) and high (approximately 50 pN) loads: complete data sets are acquired in under a minute. Experimental F-x relationships were fit over much of their range by entropic elasticity theories based on worm-like chain models. Fits yielded a persistence length, Lp, of approximately 47 nm in a buffer containing 10 mM Na1. Multivalent cations, such as Mg2+ or spermidine 3+, reduced Lp to approximately 40 nm. Although multivalent ions shield most of the negative charges on the DNA backbone, they did not further reduce Lp significantly, suggesting that the intrinsic persistence length remains close to 40 nm. An elasticity theory incorporating both enthalpic and entropic contributions to stiffness fit the experimental results extremely well throughout the full range of extensions and returned an elastic modulus of approximately 1100 pN.  相似文献   

9.
Luo ZP  Sun YL  Fujii T  An KN 《Biorheology》2004,41(3-4):247-254
Type II collagen and hyaluronan are the two major components of extracellular molecules in cartilage and play an important role in mechanical functions of extracellular matrix. Currently, their mechanical properties have been investigated only at the gross-level. In this study, the mechanical properties of single type II collagen and hyaluronan molecules were directly measured using optical tweezers technique. The persistence length was found to be 11.2+/-8.4 nm in type II collagen and 4.5+/-1.2 nm in hyaluronan. This result suggested that type II collagen is stiffer than hyaluronan at the individual molecule level, which supports the general concept that collagen is responsible for resisting tensile force. The experimental system developed here also provides a powerful tool for quantifying mechanical properties of extracellular matrix at the single molecule level.  相似文献   

10.
The biogenesis of secretory granules in endocrine, neuroendocrine, and exocrine cells is thought to involve a selective aggregation of the regulated secretory proteins into a dense-cored structure. The dense-core is then enveloped by membrane in the trans-Golgi network and buds, forming an immature secretory granule. The immature secretory granule then undergoes a maturation process which gives rise to the mature secretory granule. The recent data on the processes of aggregation, budding and maturation are summarized here. In addition, the current knowledge about the mature secretory granule is reviewed with emphasis on the biogenesis of the membrane of this organelle.  相似文献   

11.
We have developed a method, using laser, optical tweezers and direct microscopic analysis of reproductive potential and membrane integrity, to assess single-cell viability in a stationary-phase Escherichia coli population. It is demonstrated here that a reduction in cell integrity, determined by using the fluorescent nucleic acid stain propidium iodide, correlated well with a reduction in cell proliferating potential during the stationary-phase period studied. Moreover, the same cells that exhibited reduced integrity were found to be the ones that failed to divide upon nutrient addition. A small but significant number of the intact cells (496 of 7,466 [6.6%]) failed to replicate. In other words, we did not find evidence for the existence of a large population of intact but nonculturable cells during the stationary-phase period studied but it is clear that reproductive ability can be lost prior to the loss of membrane integrity. In addition, about 1% of the stationary-phase cells were able to divide only once upon nutrient addition, and in a few cases, only one of the two cells produced by division was able to divide a second time, indicating that localized cell deterioration, inherited by only one of the daughters, may occur. The usefulness of the optical trapping methodology in elucidating the mechanisms involved in stationary-phase-induced bacterial death and population heterogeneity is discussed.  相似文献   

12.
Biogenesis of secretory granules   总被引:1,自引:0,他引:1  
Secretory granules of neuroendocrine cells store and release peptide hormones and neuropeptides in response to various stimuli. Generation of granules from the Golgi complex involves the aggregation of cargo proteins and their sorting from non-regulated secretory molecules. Recent findings on knockout mice lacking individual granule constituents have challenged the hypothesis that an 'essential' protein for the assembly of these organelles exists, while studies on polypyrimidine tract-binding protein and ICA512/IA-2 have provided insight into the mechanisms for adjusting granule production in relation to stimulation and secretory activity.  相似文献   

13.
Collagens are the most abundant proteins of vertebrates and they provide mechanical and supportive functions in a wide range of connective tissues. Knowledge of the mechanical properties of single collagen molecules is essential in studying the self-assembly of collagen, the interaction between cells and extracellular matrix, the etiology of tissue degeneration and mechanism of regeneration, and the relationship between the structures and mechanical properties of tissues. Here we stretched single type II collagen molecules in neutral pH solution using optical tweezers. The molecular parameters of collagen were obtained by fitting force-extension curves into worm-like chain elasticity model. The molecule length of type II collagen monomer was 295.8 nm. The persistence length of type II collagen monomer was 11.2 nm. These observations indicate that collagen molecules are flexible rather than rigid rod molecules at neutral pH solution.  相似文献   

14.
Summary The relationship between granule density, protein content, and Ca and S contents were studied in two secretory granule fractions, from parotid glands of the rat, previously shown to constitute different stages in granule maturation. The density of the lighter fraction was between 1.133 and 1.142 g/ml, while that of the heavier fraction was greater than 1.142 g/ml. The mean protein content of the denser granules was 12% greater than that of the lighter granules (P<0.03), while the dry-mass elemental concentrations in the two granule fractions were unchanged. These results indicate that protein is added to granules during the maturation process (presumably by vesicular traffic), and that the resulting increase in granule density is not driven simply by decrease in water content and/or increased concentrations of inorganic Ca or S in the granules. The elemental concentration values also indicate that the diffusible elements permeate the granule membrane during the fractionation procedures.  相似文献   

15.
16.
Platelet granule exocytosis plays a critical role in thrombosis and wound healing. Platelets have three major types of secretory granules that are defined by their unique molecular contents, kinetics of exocytosis and morphologies. Although the ontogeny of platelet granules is poorly understood, a convergence of new insights into megakaryocyte development, the molecular mechanisms of vesicle trafficking and the genetic basis of platelet granule defects, is beginning to define the cellular and molecular pathways responsible for platelet granule ontogeny.  相似文献   

17.
The force required to rupture bonds between individual Staphylococcus aureus MSCRAMMs and surfaces coated with extracellular matrix molecules has been quantified by using optical tweezers. The observed binding forces between fibrinogen or fibronectin and S. aureus MSCRAMMs occurred as an approximate integer multiple of 20 or 25 pN, respectively.  相似文献   

18.
Intracellular sedimentation of highly dense, starch-filled amyloplasts toward the gravity vector is likely a key initial step for gravity sensing in plants. However, recent live-cell imaging technology revealed that most amyloplasts continuously exhibit dynamic, saltatory movements in the endodermal cells of Arabidopsis stems. These complicated movements led to questions about what type of amyloplast movement triggers gravity sensing. Here we show that a confocal microscope equipped with optical tweezers can be a powerful tool to trap and manipulate amyloplasts noninvasively, while simultaneously observing cellular responses such as vacuolar dynamics in living cells. A near-infrared (λ=1064 nm) laser that was focused into the endodermal cells at 1 mW of laser power attracted and captured amyloplasts at the laser focus. The optical force exerted on the amyloplasts was theoretically estimated to be up to 1 pN. Interestingly, endosomes and trans-Golgi network were trapped at 30 mW but not at 1 mW, which is probably due to lower refractive indices of these organelles than that of the amyloplasts. Because amyloplasts are in close proximity to vacuolar membranes in endodermal cells, their physical interaction could be visualized in real time. The vacuolar membranes drastically stretched and deformed in response to the manipulated movements of amyloplasts by optical tweezers. Our new method provides deep insights into the biophysical properties of plant organelles in vivo and opens a new avenue for studying gravity-sensing mechanisms in plants.  相似文献   

19.
Force and torque, stress and strain or work are examples of mechanical and elastic actions which are intimately linked to chemical reactions in the cell. Optical tweezers are a light-based method which allows the real-time manipulation of single molecules and cells to measure their interactions. We describe the technique, briefly reviewing the operating principles and the potential capabilities to the study of biological processes. Additional emphasis is given to the importance of fluctuations in biology and how single-molecule techniques allow access to them. We illustrate the applications by addressing experimental configurations and recent progresses in molecular and cell biology.  相似文献   

20.
Insulin secretory granules (ISGs) are cytoplasmic organelles of pancreatic beta-cells. They are responsible for the storage and secretion of insulin. To date, only about 30 different proteins have been clearly described to be associated with these organelles. However, data from two-dimensional gel electrophoresis analyses suggested that almost 150 different polypeptides might be present within ISGs. The elucidation of the identity and function of the ISG proteins by proteomics strategies would be of considerable help to further understand some of the underlying mechanisms implicated in ISG biogenesis and trafficking. Furthermore it should give the bases to the comprehension of impaired insulin secretion observed during diabetes. A proteomics analysis of an enriched insulin granule fraction from the rat insulin-secreting cell line INS-1E was performed. The efficacy of the fractionation procedure was assessed by Western blot and electron microscopy. Proteins of the ISG fraction were separated by SDS-PAGE, excised from consecutive gel slices, and tryptically digested. Peptides were analyzed by nano-LC-ESI-MS/MS. This strategy identified 130 different proteins that were classified into four structural groups including intravesicular proteins, membrane proteins, novel proteins, and other proteins. Confocal microscopy analysis demonstrated the association of Rab37 and VAMP8 with ISGs in INS-1E cells. In conclusion, the present study identified 130 proteins from which 110 are new proteins associated with ISGs. The elucidation of their role will further help in the understanding of the mechanisms governing impaired insulin secretion during diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号