首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GABA is the major inhibitory neurotransmitter in the nervous system and acts at a variety of receptors including GABAC receptors, which are a subclass of GABAA receptors. Here we have used molecular dynamics simulations of GABA docked into the extracellular domain of the GABAC receptor to explain the molecular interactions of the neurotransmitter with the residues that contribute to the binding site; in particular, we have explored the interaction of GABA with Arg104. The simulations suggest that the amine group of GABA forms cation-π interactions with Tyr102 and Tyr198, and hydrogen-bonds with Gln83, Glu220, Ser243, and Ser168, and, most prominently, with Arg104. Substituting Arg104 with Ala, Glu, or Lys, which experimentally disrupt GABAC receptor function, and repeating the simulation revealed fewer and different bonding patterns with GABA, or the rapid exit of GABA from the binding pocket. The simulations therefore unveil interactions of GABA within the binding pocket, and explain experimental data, which indicate that Arg104 is critical for the efficient functioning of the receptor.  相似文献   

2.
Amino acids are polymerized into peptides in the peptidyl transferase center of the ribosome. The nascent peptides then pass through the exit tunnel before they reach the extraribosomal environment. A number of nascent peptides interact with the exit tunnel and stall elongation at specific sites within their peptide chain. Several mutational changes in RNA and protein components of the ribosome have previously been shown to interfere with pausing. These changes are localized in the narrowest region of the tunnel, near a constriction formed by ribosomal proteins L4 and L22. To expand our knowledge about peptide-induced pausing, we performed a comparative study of pausing induced by two peptides, SecM and a short peptide, CrbCmlA, that requires chloramphenicol as a coinducer of pausing. We analyzed the effects of 15 mutational changes in L4 and L22, as well as the effects of methylating nucleotide A2058 of 23S rRNA, a nucleotide previously implicated in pausing and located close to the L4-L22 constriction. Our results show that methylation of A2058 and most mutational changes in L4 and L22 have differential effects on pausing in response to CrbCmlA and SecM. Only one change, a 6-amino-acid insertion after amino acid 72 in L4, affects pausing in both peptides. We conclude that the two peptides interact with different regions of the exit tunnel. Our results suggest that either the two peptides use different mechanisms of pausing or they interact differently but induce similar inhibitory conformational changes in functionally important regions of the ribosome.  相似文献   

3.
Adenylyl cyclase (AC) toxin is an essential toxin that allows Bordetella pertussis to invade eukaryotic cells, where it is activated after binding to calmodulin (CaM). Based on the crystal structure of the AC catalytic domain in complex with the C-terminal half of CaM (C-CaM), our previous molecular dynamics simulations (Selwa, E., Laine, E., and Malliavin, T. (2012) Differential role of calmodulin and calcium ions in the stabilization of the catalytic domain of adenyl cyclase CyaA from Bordetella pertussis. Proteins 80, 1028–1040) suggested that three residues (i.e. Arg338, Asn347, and Asp360) might be important for stabilizing the AC/CaM interaction. These residues belong to a loop-helix-loop motif at the C-terminal end of AC, which is located at the interface between CaM and the AC catalytic loop. In the present study, we conducted the in silico and in vitro characterization of three AC variants, where one (Asn347; ACm1A), two (Arg338 and Asp360; ACm2A), or three residues (Arg338, Asn347, and Asp360; ACm3A) were substituted with Ala. Biochemical studies showed that the affinities of ACm1A and ACm2A for CaM were not affected significantly, whereas that of ACm3A was reduced dramatically. To understand the effects of these modifications, molecular dynamics simulations were performed based on the modified proteins. The molecular dynamics trajectories recorded for the ACm3A·C-CaM complex showed that the calcium-binding loops of C-CaM exhibited large fluctuations, which could be related to the weakened interaction between ACm3A and its activator. Overall, our results suggest that the loop-helix-loop motif at the C-terminal end of AC is crucial during CaM binding for stabilizing the AC catalytic loop in an active configuration.  相似文献   

4.
Differential scanning calorimetry studies of the effect of NaCl on protein-based polymer self-assembly has been carried out on six elastin-based synthetic sequential polypeptides- i.e., the polypentapeptide (L -Val1-L -Pro2-Gly3-L -Val4-Gly5)n and its more hydrophobic analogues (L -Leu1-L -Pro2-Gly3-L -Val4-Gly5)n and (L -Val1-L -Pro2-L -Ala3-L -Val4-Gly5)n; the polytetrapeptide (L -Val1-L -Pro2-Gly3-Gly4)n and its more hydrophobic analogue (L -IIe1-L -Pro2-Gly3-Gly4)n; and the polynonapeptide (a pentatetra hybrid), (L -Val1-L -Pro2-Gly3-L -Val4-Gly5-L -Val6-L -Pro7-Gly8-Gly9)n. Previous physical characterizations of the polypentapeptides have demonstrated the occurrence of an inverse temperature transition since increase in order of the polypentapeptide, as the temperature is raised from below to above that of the transition, has been repeatedly observed using different physical characterizations. In the present experiments, it is observed that the transition temperatures of the polypeptides studied are linearly dependent on NaCl concentration. The molar effectiveness of NaCl in shifting the transition temperature ΔTm/[N], is about 14°C/[N], with the dependence on peptide hydrophobicity being fairly small. Interestingly, however, the δΔQ/ [N] does depend on the hydrophobicity of a polypeptide.  相似文献   

5.
Surface residues have a significant impact on the enantioselectivity of lipases. But the molecular basis of this has never been explained. In this work, transition state complexes of Rhizomucor miehei lipase (RmL) and (R)- or (S)-n-butyl 2-phenxypropinate were studied using molecular dynamics. According to comparison between B-factor of the two simulated complexes, the β 1β 2 loop and α 2 helix were considered the enantioselectivity-determining domains of RmL. Interaction analysis of these domains suggested an Asp61–Arg86 electrostatic interaction linking the loop and helix strongly impacting enantioselectivity of RmL. Modification of Arg86 by 1, 2-cyclohexanedione weakening this interaction decreased the E ratio from 6 to 1, modification by 1-iodo-2, 3-butanedione covalently bonding Asp61 and Arg86 strengthening the interaction increased the E ratio to 45. Dynamics simulation and energy calculation of the modified lipases also displayed corresponding decreases or increases of enantioselectivity.  相似文献   

6.
D W Urry  T L Trapane  K U Prasad 《Biopolymers》1985,24(12):2345-2356
The temperature dependence of the composition of coacervate and equilibrium phases is examined for the polypentapeptide of elastin (L -Val1-L -Pro2-Gly3-L -Val4-Gly5)n in water. This provides for the development of a phase diagram. CD data is presented that provides information on associated polypeptide structure changes that, when added to previous CD, nmr, and dielectric relaxation data at lower water composition, allow construction of a phase-structure diagram of the polypentapeptide–water system. The molecular-weight dependence of phase change (coacervation) is included. The volume–composition studies as a function of temperature also provide temperature coefficients of expansion and of composition important in analyzing the mechanism of elasticity.  相似文献   

7.
The ribosomal protein L22 is a core protein of the large ribosomal subunit interacting with all domains of the 23S rRNA. The triplet Met82-Lys83-Arg84 deletion in L22 from Escherichia coli renders cells resistant to erythromycin which is known as an inhibitor of the nascent peptide chain elongation. The crystal structure of the Thermus thermophilus L22 mutant with equivalent triplet Leu82-Lys83-Arg84 deletion has been determined at 1.8A resolution. The superpositions of the mutant and the wild-type L22 structures within the 50S subunits from Haloarcula marismortui and Deinococcus radiodurans show that the mutant beta-hairpin is bent inward the ribosome tunnel modifying the shape of its narrowest part and affecting the interaction between L22 and 23S rRNA. 23S rRNA nucleotides of domain V participating in erythromycin binding are located on the opposite sides of the tunnel and are brought to those positions by the interaction of the 23S rRNA with the L22 beta-hairpin. The mutation in the L22 beta-hairpin affects the orientation and distances between those nucleotides. This destabilizes the erythromycin-binding "pocket" formed by 23S rRNA nucleotides exposed at the tunnel surface. It seems that erythromycin, while still being able to interact with one side of the tunnel but not reaching the other, is therefore unable to block the polypeptide growth in the drug-resistant ribosome.  相似文献   

8.
In a unique global chromatin remodeling process during mammalian spermiogenesis, 90% of the nucleosomal histones are replaced by testis-specific transition proteins, TP1, TP2, and TP4. These proteins are further substituted by sperm-specific protamines, P1 and P2, to form a highly condensed sperm chromatin. In spermatozoa, a small proportion of chromatin, which ranges from 1 to 10% in mammals, retains the nucleosomal architecture and is implicated to play a role in transgenerational inheritance. However, there is still no mechanistic understanding of the interaction of chromatin machinery with histones and transition proteins, which facilitate this selective histone replacement from chromatin. Here, we report the identification of 16 and 19 novel post-translational modifications on rat endogenous transition proteins, TP1 and TP2, respectively, by mass spectrometry. By in vitro assays and mutational analysis, we demonstrate that protein arginine methyltransferase PRMT4 (CARM1) methylates TP2 at Arg71, Arg75, and Arg92 residues, and lysine methyltransferase KMT7 (Set9) methylates TP2 at Lys88 and Lys91 residues. Further studies with modification-specific antibodies that recognize TP2K88me1 and TP2R92me1 modifications showed that they appear in elongating to condensing spermatids and predominantly associated with the chromatin-bound TP2. This work establishes the repertoire of post-translational modifications that occur on TP1 and TP2, which may play a significant role in various chromatin-templated events during spermiogenesis and in the establishment of the sperm epigenome.  相似文献   

9.
Human complement receptor type 2 (CR2 and CD21) is a cell membrane receptor, with 15 or 16 extracellular short consensus repeats (SCRs), that promotes B lymphocyte responses and bridges innate and acquired immunity. The most distally located SCRs, SCR1–2, mediate the interaction of CR2 with its four known ligands (C3d, EBV gp350, IFNα, and CD23). To ascertain specific interacting residues on CR2, we utilized NMR studies wherein gp350 and IFNα were titrated into 15N-labeled SCR1–2, and chemical shift changes indicative of specific inter-molecular interactions were identified. With backbone assignments made, the chemical shift changes were mapped onto the crystal structure of SCR1–2. With regard to gp350, the binding region of CR2 is primarily focused on SCR1 and the inter-SCR linker, specifically residues Asn11, Arg13, Ala22, Arg28, Ser32, Arg36, Lys41, Lys57, Tyr64, Lys67, Tyr68, Arg83, Gly84, and Arg89. With regard to IFNα, the binding is similar to the CR2-C3d interaction with specific residues being Arg13, Tyr16, Arg28, Ser42, Lys48, Lys50, Tyr68, Arg83, Gly84, and Arg89. We also report thermodynamic properties of each ligand-receptor pair determined using isothermal titration calorimetry. The CR2-C3d interaction was characterized as a two-mode binding interaction with Kd values of 0.13 and 160 μm, whereas the CR2-gp350 and CR2-IFNα interactions were characterized as single site binding events with affinities of 0.014 and 0.035 μm, respectively. The compilation of chemical binding maps suggests specific residues on CR2 that are uniquely important in each of these three binding interactions.  相似文献   

10.
70 S ribosomes from Escherichia coli have been reacted with the bifunctional reagent 1,4-phenyldiglyoxal under near physiological conditions. As a result of the cross-linking reaction a number of high-molecular-weight protein fractions with altered electrophoretic mobility could be isolated. A new chemical procedure has been introduced to reverse the cross-links between proteins at least partially. The cleavage reaction did not affect the gel electrophoretic mobility of the proteins. Thus a direct identification of cross-linked proteins using one- or two-dimensional gels was made possible. Two protein trimers, S3-S4-S5 and L1-S4-S5, as well as five protein dimers, S3-S4, L6-L7/12, L10-L7/12, S9-L19 and L18-L19 could be identified as close neighbours in the E. coli 70 S ribosome. The protein pairs S9-L19 and L18-L19 had previously not been identified as near neighbours using cross-linking studies.  相似文献   

11.
To investigate structure-function relationships of cytochromes P450 (CYP), 3-azidiamantane was employed for photoaffinity labeling of rabbit microsomal CYP2B4. Four diamantane labeled tryptic fragments were identified by mass spectrometry and sequencing: peptide I (Leu359-Lys373), peptide II (Leu30-Arg48), peptide III (Phe127-Arg140), and peptide IV (Arg434-Arg443). Their positions were projected into CYP2B4 model structures and compared with substrate binding sites, proposed by docking of diamantane. We identified novel binding regions outside the active site of CYP2B4. One of them, defined with diamantane modified Arg133, marks a possible entrance to the active site from the heme proximal face. In addition to crystal structures of CYP2B4 chimeras and molecular dynamics simulations, our data of photoaffinity labeling of the full CYP2B4 molecule provide further insight into functional and structural aspects of substrate binding.  相似文献   

12.
Activated protein C (APC) down-regulates thrombin formation through proteolytic inactivation of factor Va (FVa) by cleavage at Arg506 and Arg306 and of factor VIIIa (FVIIIa) by cleavage at Arg336 and Arg562. To study substrate recognition by APC, active site-mutated APC (APC(S360A)) was used, which lacks proteolytic activity but exhibits anticoagulant activity. Experiments in model systems and in plasma show that APC(S360A), and not its zymogen protein C(S360A), expresses anticoagulant activities by competing with activated coagulation factors X and IX for binding to FVa and FVIIIa, respectively. APC(S360A) bound to FVa with a KD of 0.11 ± 0.05 nm and competed with active site-labeled Oregon Green activated coagulation factor X for binding to FVa. The binding of APC(S360A) to FVa was not affected by protein S but was inhibited by prothrombin. APC(S360A) binding to FVa was critically dependent upon the presence of Arg506 and not Arg306 and additionally required an active site accessible to substrates. Inhibition of FVIIIa activity by APC(S360A) was >100-fold less efficient than inhibition of FVa. Our results show that despite exosite interactions near the Arg506 cleavage site, binding of APC(S360A) to FVa is almost completely dependent on Arg506 interacting with APC(S360A) to form a nonproductive Michaelis complex. Because docking of APC to FVa and FVIIIa constitutes the first step in the inactivation of the cofactors, we hypothesize that the observed anticoagulant activity may be important for in vivo regulation of thrombin formation.  相似文献   

13.
The clostripain core protein is composed of the light and heavy chain subunits linked by a nonapeptide into a single polypeptide chain [Mol. Gen. Genet. 240: 140, 1993]. Linker removal is due to autocatalytic processing yielding active heterodimeric enzyme. We have expressed mutationally altered core protein variants in the heterologous host Escherichia coli to gain further insight into the process of clostripain automaturation. In a mutationally created Cys231→ Ser variant, heterodimer formation was largely impaired, providing molecular evidence that the capacity for automaturation is attributed to the active site cysteine, Cys231, of the native enzyme. Artificially generated deletions of the linker peptide did not prevent the formation of active enzyme. One variant gave rise to a single-chain molecule devoid of the authentic processing sites while retaining enzymatic activity. Experiments performed with linker substitution variants suggested that the efficacy of automaturation depends on a proper configuration of the linker region. According to computerized predictions, the formation of a turn-structured protein loop or hinge with hydrophilic characteristics in the linker region is probably a prerequisite for the interaction of the active site cysteine with the processing sites, Arg181 and Arg190. We propose that the clostripain linker nonapeptide serves as an important transient intramolecular inhibitor in the cellular self-defense program evolved by the natural host Clostridium histolyticum. Received: 23 January 1996 / Accepted: 22 April 1996  相似文献   

14.
Group IVA cytosolic phospholipase A2 (cPLA2α), which harbors an N-terminal lipid binding C2 domain and a C-terminal lipase domain, produces arachidonic acid from the sn-2 position of zwitterionic lipids such as phosphatidylcholine. The C2 domain has been shown to bind zwitterionic lipids, but more recently, the anionic phosphomonoester sphingolipid metabolite ceramide-1-phosphate (C1P) has emerged as a potent bioactive lipid with high affinity for a cationic patch in the C2 domain β-groove. To systematically analyze the role that C1P plays in promoting the binding of cPLA2α-C2 to biological membranes, we employed biophysical measurements and cellular translocation studies along with mutagenesis. Biophysical and cellular translocation studies demonstrate that C1P specificity is mediated by Arg59, Arg61, and His62 (an RxRH sequence) in the C2 domain. Computational studies using molecular dynamics simulations confirm the origin of C1P specificity, which results in a spatial shift of the C2 domain upon membrane docking to coordinate the small C1P headgroup. Additionally, the hydroxyl group on the sphingosine backbone plays an important role in the interaction with the C2 domain, further demonstrating the selectivity of the C2 domain for C1P over phosphatidic acid. Taken together, this is the first study demonstrating the molecular origin of C1P recognition.  相似文献   

15.
The structural and dynamical features of the hormone α‐MSH in solution have been examined over a 100 ns time scale by using free energy molecular mechanics models at room temperature. The free energy surface has been modeled using methods from integral equation theory and the dynamics by the Langevin equation. A modification of the accessible surface area friction drag model was used to calculate the atomic friction coefficients. The molecule shows a stable β‐turn conformation in the message region and a close interaction between the side chains of His6, Phe7, and Trp9. A salt bridge between Glu5 and Arg8 was found not to be a preferred interaction, whereas a Glu5 and Lys11 salt bridge was not sampled, presumably due to relatively high free energy barriers. The message region was more conformationally rigid than the N‐terminal region. Several structural features observed here agree well with experimental results. The conformational features suggest a receptor–hormone interaction model where the hydrophobic side chains of Phe7 and Trp9 interact with the transmembrane portion of the MC1 receptor. Also, the positively charged side chain of Arg8 and the imidazole side chain of His6 may interact with the negatively charged portions of the receptor which may even be on the receptor's extracellular loops. © 1999 John Wiley & Sons, Inc. Biopoly 50: 255–272, 1999  相似文献   

16.
Molecular dynamics simulation method is used to assess the contribution of a disease-associated salt bridge in the early stages of the conformational rearrangement of human prion protein upon Arg208→His mutation, which causes Creutzfeldt-Jakob disease. Previous investigations have suggested that the breakage of this putative salt bridge (D144/E146 ↔ Arg208) between helix 1 and helix 3 is responsible for such a mutation-driven process. So far, no experimental data has been reported in order to distinguish the contribution of this single salt bridge in the initial steps of amyloid formation. Consequently, we decided to investigate the role of this salt bridge in early conformational rearrangements. To remove the salt bridge without perturbations in the backbone structure, the neutralized states of the involved residues were used. Three 10-ns molecular dynamics simulations on three initial structures have been performed. The results revealed that the early stages of the conformational rearrangements, against common belief, are mainly associated with the mutation-induced global changes in the backbone dynamics but not with the breaking of the salt bridge.  相似文献   

17.
The enzymatic function of succinate dehydrogenase (SDH) is dependent on covalent attachment of FAD on the ∼70-kDa flavoprotein subunit Sdh1. We show presently that flavinylation of the Sdh1 subunit of succinate dehydrogenase is dependent on a set of two spatially close C-terminal arginine residues that are distant from the FAD binding site. Mutation of Arg582 in yeast Sdh1 precludes flavinylation as well as assembly of the tetrameric enzyme complex. Mutation of Arg638 compromises SDH function only when present in combination with a Cys630 substitution. Mutations of either Arg582 or Arg638/Cys630 do not markedly destabilize the Sdh1 polypeptide; however, the steady-state level of Sdh5 is markedly attenuated in the Sdh1 mutant cells. With each mutant Sdh1, second-site Sdh1 suppressor mutations were recovered in Sdh1 permitting flavinylation, stabilization of Sdh5 and SDH tetramer assembly. SDH assembly appears to require FAD binding but not necessarily covalent FAD attachment. The Arg residues may be important not only for Sdh5 association but also in the recruitment and/or guidance of FAD and or succinate to the substrate site for the flavinylation reaction. The impaired assembly of SDH with the C-terminal Sdh1 mutants suggests that FAD binding is important to stabilize the Sdh1 conformation enabling association with Sdh2 and the membrane anchor subunits.  相似文献   

18.
Summary A broad-spectrum mercury resistance locus (mer) from a spontaneous chloramphenicol-sensitive (Cms), arginine auxotrophic (Arg) mutant of Streptomyces lividan 1326 was isolated on a 6 kb DNA fragment by shotgun cloning into the mercury-sensitive derivative S. lividans TK64 using the vector pIJ702. The mer genes form part of a very large amplifiable DNA sequence present in S. lividans 1326. This element was amplified to about 20 copies per chromosome in the Cms Arg mutant and was missing from strains like S. lividans TK64, cured for the plasmid SLP3. DNA sequence analysis of a 5 kb region encompassing the whole region required for broad-spectrum mercury resistance revealed six open reading frames (ORFs) transcribed in opposite directions from a common intercistronic region. The protein sequences predicted from the two ORFs transcribed in one direction showed a high degree of similarity to mercuric reductase and organomercurial lyase from other gram-negative and gram-positive sources. Few, if any, similarities were found between the predicted polypeptide sequences of the other four ORFs and other known proteins.  相似文献   

19.
Proton-bound homochiral and heterochiral dimers, X-H+-X, of five amino acids (X = Ser, Ala, Thr, Phe, and Arg) are investigated theoretically using quantum chemical density functional theory (DFT) calculations and molecular dynamics simulations with the aim to unveil diastereomer-specific mid-infrared (mid-IR) absorption bands in the spectral range of 1000 to 1800 cm−1. The theoretical calculations performed in this work imply that all systems, except Ala2H+, have distinct mid-IR absorption bands in homochiral and heterochiral configurations, which make them appropriate systems to be studied experimentally with mid-IR spectroscopy. We show that intermolecular interaction with the side chain, in the form of hydrogen bonding or cation-π interaction, is necessary for chiral effects to be present in the mid-IR spectra of proton-bound dimers of amino acids. We also report new conformers for Ala2H+, Thr2H+, Phe2H+, and Arg2H+, which were not found in earlier studies of these dimers.  相似文献   

20.
The conduction properties of the voltage-gated potassium channel Kv1.3 and its modes of interaction with several polypeptide venoms are examined using Brownian dynamics simulations and molecular dynamics calculations. Employing an open-state homology model of Kv1.3, we first determine current-voltage and current-concentration curves and ascertain that simulated results accord with experimental measurements. We then investigate, using a molecular docking method and molecular dynamics simulations, the complexes formed between the Kv1.3 channel and several Kv-specific polypeptide toxins that are known to interfere with the conducting mechanisms of several classes of voltage-gated K+ channels. The depths of potential of mean force encountered by charybdotoxin, α-KTx3.7 (also known as OSK1) and ShK are, respectively, −19, −27, and −25 kT. The dissociation constants calculated from the profiles of potential of mean force correspond closely to the experimentally determined values. We pinpoint the residues in the toxins and the channel that are critical for the formation of the stable venom-channel complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号