首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Target selectivity in EF-hand calcium binding proteins   总被引:9,自引:0,他引:9  
EF-hand calcium binding proteins have remarkable sequence homology and structural similarity, yet their response to binding of calcium is diverse and they function in a wide range of biological processes. Knowledge of the fine-tuning of EF-hand protein sequences to optimize specific biochemical properties has been significantly advanced over the past 10 years by determination of atomic resolution structures. These data lay the foundation for addressing how functional selectivity is generated from a generic ionic signal. This review presents current ideas about the structural mechanisms that provide the selectivity of different EF-hand proteins for specific cellular targets, using S100 and calmodulin family proteins to demonstrate the critical concepts. Three factors contribute significantly to target selectivity: molecular architecture, response to binding of Ca(2+) ions, and the characteristics of target binding surfaces. Comparisons of calmodulin and S100 proteins provide insights into the role these factors play in facilitating the variety of binding configurations necessary for recognizing a diverse set of targets.  相似文献   

2.
3.
4.
EF-hand calcium binding proteins (CaBPs) share strong sequence homology, but exhibit great diversity in structure and function. Thus although calmodulin (CaM) and calcineurin B (CNB) both consist of four EF hands, their domain arrangements are quite distinct. CaM and the CaM-like proteins are characterized by an extended architecture, whereas CNB and the CNB-like proteins have a more compact form. In this study, we performed structural alignments and molecular dynamics (MD) simulations on 3 CaM-like proteins and 6 CNB-like proteins, and quantified their distinct structural and dynamical features in an effort to establish how their sequences specify their structures and dynamics. Alignments of the EF2-EF3 region of these proteins revealed that several residues (not restricted to the linker between the EF2 and EF3 motifs) differed between the two groups of proteins. A customized inverse folding approach followed by structural assessments and MD simulations established the critical role of these residues in determining the structure of the proteins. Identification of the critical determinants of the two different EF-hand domain arrangements and the distinct dynamical features relevant to their respective functions provides insight into the relationships between sequence, structure, dynamics and function among these EF-hand CaBPs.  相似文献   

5.
EF-hand calcium binding proteins (CaBPs) share strong sequence homology, but exhibit great diversity in structure and function. Thus although calmodulin (CaM) and calcineurin B (CNB) both consist of four EF hands, their domain arrangements are quite distinct. CaM and the CaM-like proteins are characterized by an extended architecture, whereas CNB and the CNB-like proteins have a more compact form. In this study, we performed structural alignments and molecular dynamics (MD) simulations on 3 CaM-like proteins and 6 CNB-like proteins, and quantified their distinct structural and dynamical features in an effort to establish how their sequences specify their structures and dynamics. Alignments of the EF2-EF3 region of these proteins revealed that several residues (not restricted to the linker between the EF2 and EF3 motifs) differed between the two groups of proteins. A customized inverse folding approach followed by structural assessments and MD simulations established the critical role of these residues in determining the structure of the proteins. Identification of the critical determinants of the two different EF-hand domain arrangements and the distinct dynamical features relevant to their respective functions provides insight into the relationships between sequence, structure, dynamics and function among these EF-hand CaBPs.  相似文献   

6.
Complementarity, in terms of both shape and electrostatic potential, has been quantitatively estimated at protein-protein interfaces and used extensively to predict the specific geometry of association between interacting proteins. In this work, we attempted to place both binding and folding on a common conceptual platform based on complementarity. To that end, we estimated (for the first time to our knowledge) electrostatic complementarity (Em) for residues buried within proteins. Em measures the correlation of surface electrostatic potential at protein interiors. The results show fairly uniform and significant values for all amino acids. Interestingly, hydrophobic side chains also attain appreciable complementarity primarily due to the trajectory of the main chain. Previous work from our laboratory characterized the surface (or shape) complementarity (Sm) of interior residues, and both of these measures have now been combined to derive two scoring functions to identify the native fold amid a set of decoys. These scoring functions are somewhat similar to functions that discriminate among multiple solutions in a protein-protein docking exercise. The performances of both of these functions on state-of-the-art databases were comparable if not better than most currently available scoring functions. Thus, analogously to interfacial residues of protein chains associated (docked) with specific geometry, amino acids found in the native interior have to satisfy fairly stringent constraints in terms of both Sm and Em. The functions were also found to be useful for correctly identifying the same fold for two sequences with low sequence identity. Finally, inspired by the Ramachandran plot, we developed a plot of Sm versus Em (referred to as the complementarity plot) that identifies residues with suboptimal packing and electrostatics which appear to be correlated to coordinate errors.  相似文献   

7.
The EF-hand protein with a helix-loop-helix Ca(2+) binding motif constitutes one of the largest protein families and is involved in numerous biological processes. To facilitate the understanding of the role of Ca(2+) in biological systems using genomic information, we report, herein, our improvement on the pattern search method for the identification of EF-hand and EF-like Ca(2+)-binding proteins. The canonical EF-hand patterns are modified to cater to different flanking structural elements. In addition, on the basis of the conserved sequence of both the N- and C-terminal EF-hands within S100 and S100-like proteins, a new signature profile has been established to allow for the identification of pseudo EF-hand and S100 proteins from genomic information. The new patterns have a positive predictive value of 99% and a sensitivity of 96% for pseudo EF-hands. Furthermore, using the developed patterns, we have identified zero pseudo EF-hand motif and 467 canonical EF-hand Ca(2+) binding motifs with diverse cellular functions in the bacteria genome. The prediction results imply that pseudo EF-hand motifs are phylogenetically younger than canonical EF-hand motifs. Our prediction of Ca(2+) binding motifs provides not only an insight into the role of Ca(2+) and Ca(2+)-binding proteins in bacterial systems, but also a way to explore and define the role of Ca(2+) in other biological systems (calciomics).  相似文献   

8.
Coupling of folding and binding for unstructured proteins   总被引:1,自引:0,他引:1  
There are now numerous examples of proteins that are unstructured or only partially structured under physiological conditions and yet are nevertheless functional. Such proteins are especially prevalent in eukaryotes. In many cases, intrinsically disordered proteins adopt folded structures upon binding to their biological targets. Many new examples of coupled folding and binding events have been reported recently, providing new insights into mechanisms of molecular recognition.  相似文献   

9.
Neuronal calcium sensor-1, a protein of calcium sensor family, is known to have four structural EF-hands. We have synthesised peptides corresponding to all the four EF-hands and studied their conformation and calcium-binding. Our data confirm that the first putative site, a non-canonical one (EF1), does not bind calcium. We have investigated if this lack of binding is due to the presence of non-favoured residues (particularly at +x and -z co-ordinating positions) of the loop. We have mutated these residues and found that after modification the peptides bound calcium. However, these mutated peptides (EF1 and its functional mutants) do not show any Ca(2+) induced changes in far-UV CD. EF2, EF3, and EF4 peptides bind Ca(2+), EF3 being the strongest binder, followed by EF4. Our data of Ca(2+)-binding to individual EF peptides show that there are three active Ca(2+)-binding sites in NCS-1. We have also studied the binding of a neuroleptic drug, chlorpromazine, with the protein as well as with its EF-hands. CPZ binds myristoylated as well as non-myristoylated NCS-1 in Ca(2+)-dependent manner, with dynamic interaction to myristoylated protein. CPZ does not bind to EF1, but binds to functional EF-hand peptides and induces changes in far-UV CD. Our results suggest that NCS-1 could be a target of such antipsychotic and neuroleptic drugs.  相似文献   

10.
11.
Intracellular neuronal calcium sensors (NCS) constitute a rapidly growing family of calcium-binding proteins which belong to the superfamily of EF-hand proteins. The NCS family includes as subgroups the recoverins and GCAPs (guanylyl cyclase-activating proteins), which are primarily expressed in retinal photoreceptor cells, and the frequenins and VILIPs (visinin-like proteins), which are widely but differentially expressed in the nervous system. In this review the recent developments in elucidating the functional activities of NCS proteins on signal transduction pathways in neurons are surveyed and discussed. We will focus our attention on calcium-dependent membrane association by the so-called calcium-myristoyl switch as a possible mechanism of signal transduction and on the roles of NCS proteins in intraneuronal signaling cascades, which are best studied in the visual and olfactory systems.  相似文献   

12.
Positive cooperativity, defined as an enhancement of the ligand affinity at one site as a consequence of binding the same type of ligand at another site, is a free energy coupling between binding sites. It can be present both in systems with sites having identical ligand affinities and in systems where the binding sites have different affinities. When the sites have widely different affinities such that they are filled with ligand in a sequential manner, it is often difficult to quantify or even detect the positive cooperativity, if it occurs. This study presents verification and quantitative measurements of the free energy coupling between the two calcium binding sites in a mutant form of calbindin D9k. Wild-type calbindin D9k binds two calcium ions with similar affinities and positive cooperativity--the free energy coupling, delta delta G, is around -8 kJ.mol-1 (Linse S, et al., 1991, Biochemistry 30: 154-162). The mutant, with the substitution Asn 56-->Ala, binds calcium in a sequential manner. In the present work we have taken advantage of the variations among different metal ions in terms of their preferences for the two binding sites in calbindin D9k. Combined studies of the binding of Ca2+, Cd2+, and La3+ have allowed us to conclude that in this mutant delta delta G < -6.4 kJ.mol-1, and that Cd2+ and La3+ also bind to this protein with positive cooperativity. The results justify the use of the (Ca2+)1 state of the Asn 56-->Ala mutant, as well as the (Cd2+)1 state of the wild type, as models for the half-saturated states along the two pathways of cooperative Ca2+ binding in calbindin D9k.  相似文献   

13.
Classification and evolution of EF-hand proteins   总被引:14,自引:0,他引:14  
Forty-five distinct subfamilies of EF-hand proteins have been identified. They contain from two to eight EF-hands that are recognizable by amino acid sequence as being statistically similar to other EF-hand domains. All proteins within one subfamily are congruent to one another, i.e. the dendrogram computed from one of the EF-hand domains is similar, within statistical error, to the dendrogram computed from another(s) domain. Thirteen subfamilies - including Calmodulin, Troponin C, Essential light chain, Regulatory light chain - referred to collectively as CTER, are congruent with one another. They appear to have evolved from a single ur-domain by two cycles of gene duplication and fusion. The subfamilies of CTER subsequently evolved by gene duplications and speciations. The remaining 32 subfamilies do not show such general patterns of congruence; however, some - such as S100, intestinal calcium binding protein (calbindin 9kd), and trichohylin - do not form congruent clusters of subfamilies. Nearly all of the domains 1, 3, 5, and 7 are most similar to other ODD domains. Correspondingly the EVEN numbered domains of all 45 subfamilies most closely resemble EVEN domains of other subfamilies. Many sequence and chem-ical characteristics do not show systemic trends by subfamily or species of host organisms; such homoplasy is widespread. Eighteen of the subfamilies are heterochimeric; in addition to multiple EF-hands they contain domains of other evolutionary origins.© Kluwer Academic Publishers  相似文献   

14.
A growing body of evidence indicates that phytooxylipins play important roles in plant defense responses. However, many enzymes involved in the biosynthesis of these metabolites are still elusive. We have purified one of these enzymes, the peroxygenase (PXG), from oat microsomes and lipid droplets. It is an integral membrane protein requiring detergent for its solubilization. Proteinase K digestion showed that PXG is probably deeply buried in lipid droplets or microsomes with only about 2 kDa at the C-terminal region accessible to proteolytic digestion. Sequencing of the N terminus of the purified protein showed that PXG had no sequence similarity with either a peroxidase or a cytochrome P450 but, rather, with caleosins, i.e. calcium-binding proteins. In agreement with this finding, we demonstrated that recombinant thale cress and rice caleosins, expressed in yeast, catalyze hydroperoxide-dependent mono-oxygenation reactions that are characteristic of PXG. Calcium was also found to be crucial for peroxygenase activity, whereas phosphorylation of the protein had no impact on catalysis. Site-directed mutagenesis studies revealed that PXG catalytic activity is dependent on two highly conserved histidines, the 9 GHz EPR spectrum being consistent with a high spin pentacoordinated ferric heme.  相似文献   

15.
EF-hand peptides have been shown to bind calcium and dimerize to form an intact protein domain [Shaw, G.S., Hodges, R.S. & Sykes, B.D. (1990). Science, 249, 280-283]. A synthetic 33-residue EF-hand peptide with the sequence of carp parvalbumin CD site demonstrated a seven-fold increase in the apparent calcium dissociation constant with a eight-fold decrease in peptide concentration when fit to a single-site calcium-binding model. This observation is consistent with EF-hand dimerization. This paper describes a method to determine the dimerization dissociation constant and the calcium dissociation constants for both the monomer and dimer forms of this EF-hand peptide using circular dichroism techniques. By monitoring the increase in negative molar ellipticity at 222 nm with increasing peptide concentration under calcium-saturating conditions the dimerization dissociation constant for the synthetic parvalbumin CD site was determined to be 55.68+/-10.76 microM. Using the dimerization constant, the calcium dissociation constants for both the monomer and dimer forms of this peptide were determined by monitoring the change in ellipticity of peptide solutions on addition of increasing amounts of calcium. A fit of this data to a mathematical model that takes into account dimerization results in calcium dissociation constants of 421.3+/-21.56 and 47.06+/-6.72 microM for the monomer and dimer forms, respectively.  相似文献   

16.
Calmodulin and other members of the EF-hand protein family are known to undergo major changes in conformation upon binding Ca(2+). However, some EF-hand proteins, such as calbindin D9k, bind Ca(2+) without a significant change in conformation. Here, we show the importance of a precise balance of solvation energetics to conformational change, using mutational analysis of partially buried polar groups in the N-terminal domain of calmodulin (N-cam). Several variants were characterized using fluorescence, circular dichroism, and NMR spectroscopy. Strikingly, the replacement of polar side chains glutamine and lysine at positions 41 and 75 with nonpolar side chains leads to dramatic enhancement of the stability of the Ca(2+)-free state, a corresponding decrease in Ca(2+)-binding affinity, and an apparent loss of ability to change conformation to the open form. The results suggest a paradigm for conformational change in which energetic strain is accumulated in one state in order to modulate the energetics of change to the alternative state.  相似文献   

17.
Intrinsically disordered proteins (IDPs) are now recognized to be prevalent in biology, and many potential functional benefits have been discussed. However, the frequent requirement of peptide folding in specific interactions of IDPs could impose a kinetic bottleneck, which could be overcome only by efficient folding upon encounter. Intriguingly, existing kinetic data suggest that specific binding of IDPs is generally no slower than that of globular proteins. Here, we exploited the cell cycle regulator p27(Kip1) (p27) as a model system to understand how IDPs might achieve efficient folding upon encounter for facile recognition. Combining experiments and coarse-grained modeling, we demonstrate that long-range electrostatic interactions between enriched charges on p27 and near its binding site on cyclin A not only enhance the encounter rate (i.e., electrostatic steering) but also promote folding-competent topologies in the encounter complexes, allowing rapid subsequent formation of short-range native interactions en route to the specific complex. In contrast, nonspecific hydrophobic interactions, while hardly affecting the encounter rate, can significantly reduce the efficiency of folding upon encounter and lead to slower binding kinetics. Further analysis of charge distributions in a set of known IDP complexes reveals that, although IDP binding sites tend to be more hydrophobic compared to the rest of the target surface, their vicinities are frequently enriched with charges to complement those on IDPs. This observation suggests that electrostatically accelerated encounter and induced folding might represent a prevalent mechanism for promoting facile IDP recognition.  相似文献   

18.
The classical protein structure-function paradigm has been challenged by the emergence of intrinsically disordered proteins (IDPs), the proteins that do not adopt well-defined three-dimensional structures under physiological conditions. This development was accompanied by the introduction of a “coupled binding and folding” paradigm that suggests folding of IDPs upon binding to their partners. However, our recent studies challenge this general view by revealing a novel, previously unrecognized phenomenon – uncoupled binding and folding. This biologically important mechanism is characteristic of members of a new family of IDPs involved in immune signaling and underlies their unusual properties including: (1) specific homodimerization, (2) the lack of folding upon binding to a well-folded protein, another IDP molecule, or to lipid bilayer membranes, and (3) the “scissors-cut paradox”. The third phenomenon occurs in diverse IDP interactions and suggests that properties of IDP fragments are not necessarily additive in the context of the entire protein. The “no disorder-to-order transition” type of binding is distinct from known IDP interactions and is characterized by an unprecedented observation of the lack of chemical shift and peak intensity changes in multidimensional NMR spectra, a fingerprint of proteins, upon complex formation. Here, I focus on those interactions of IDPs with diverse biological partners where the binding phase driven by electrostatic interactions is not be necessarily followed by the hydrophobic folding phase. I also review new multidisciplinary knowledge about immune signaling-related IDPs and show how it expands our understanding of cell function with multiple applications in biology and medicine.  相似文献   

19.
20.
The Ca2+-binding helix-loop-helix structural motif called “EF-hand” is a common building block of a large family of proteins that function as intracellular Ca2+-receptors. These proteins respond specifically to micromolar concentrations of Ca2+ in the presence of ~1000-fold excess of the chemically similar divalent cation Mg2+. The intracellular free Mg2+ concentration is tightly controlled in a narrow range of 0.5-1.0 mM, which at the resting Ca2+ levels is sufficient to fully or partially saturate the Ca2+-binding sites of many EF-hand proteins. Thus, to convey Ca2+ signals, EF-hand proteins must respond differently to Ca2+ than to Mg2+. In this review the structural aspects of Mg2+ binding to EF-hand proteins are considered and interpreted in light of the recently proposed two-step Ca2+-binding mechanism (Grabarek, Z., J. Mol. Biol., 2005, 346, 1351). It is proposed that, due to stereochemical constraints imposed by the two-EF-hand domain structure, the smaller Mg2+ ion cannot engage the ligands of an EF-hand in the same way as Ca2+ and defaults to stabilizing the apo-like conformation of the EF-hand. It is proposed that Mg2+ plays an active role in the Ca2+-dependent regulation of cellular processes by stabilizing the “off state” of some EF-hand proteins, thereby facilitating switching off their respective target enzymes at the resting Ca2+ levels. Therefore, some pathological conditions attributed to Mg2+ deficiency might be related to excessive activation of underlying Ca2+-regulated cellular processes. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号