首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molecular dynamics (MD) simulation combined with inelastic neutron scattering can provide information about the thermal dynamics of proteins, especially the low-frequency vibrational modes responsible for large movement of some parts of protein molecules. We performed several 30-ns MD simulations of cytochrome c (Cyt c) in a water box for temperatures ranging from 110 to 300 K and compared the results with those from experimental inelastic neutron scattering. The low-frequency vibrational modes were obtained via dynamic structure factors, S(Q, ω), obtained both from inelastic neutron scattering experiments and calculated from MD simulations for Cyt c in the same range of temperatures. The well known thermal transition in structural movements of Cyt c is clearly seen in MD simulations; it is, however, confined to unstructured fragments of loops Ω1 and Ω2; movement of structured loop Ω3 and both helical ends of the protein is resistant to thermal disturbance. Calculated and experimental S(Qω) plots are in qualitative agreement for low temperatures whereas above 200 K a boson peak vanishes from the calculated plots. This may be a result of loss of crystal structure by the protein–water system compared with the protein crystal.  相似文献   

2.
3.
R Deslauriers  I C Smith 《Biopolymers》1977,16(6):1245-1257
Nuclear magnetic resonance of 13C is used to probe the overall and internal motions of proline. Spin-lattice relaxation times (T1) are reported for proline monomer dissolved in water/glycerol mixtures. Rates of overall molecular motion and internal motion depend on solvent composition but to different degrees. The effective correlation times (τeff) of the various proton-bearing carbon atoms in proline vary linearly as a function of solvent composition (%v/v) rather than of solution viscosity. The effective correlation time for molecular motion (τeff) is separated into contributions from overall molecular motion (τmol) and internal motion (τint). The γ-carbon of proline shows the smallest dependence of τint on solvent composition. The data indicate a high degree of intramolecular motion for the γ-carbon of proline. Inclusion of anisotropic molecular reorientation in the data analysis was found not to affect the above conclusions. The observed values of τeff indicate that the rotational diffusion model of molecular reorientations should apply to proline. The values of τeff calculated for proline using the Stokes-Einstein relation are larger than those observed; the discrepancy is discussed in terms of solvent-solute interactions.  相似文献   

4.
Human IgG4 antibody shows therapeutically useful properties compared with the IgG1, IgG2, and IgG3 subclasses. Thus IgG4 does not activate complement and shows conformational variability. These properties are attributable to its hinge region, which is the shortest of the four IgG subclasses. Using high throughput scattering methods, we studied the solution structure of wild-type IgG4(Ser222) and a hinge mutant IgG4(Pro222) in different buffers and temperatures where the proline substitution suppresses the formation of half-antibody. Analytical ultracentrifugation showed that both IgG4 forms were principally monomeric with sedimentation coefficients s20,w0 of 6.6–6.8 S. A monomer-dimer equilibrium was observed in heavy water buffer at low temperature. Scattering showed that the x-ray radius of gyration Rg was unchanged with concentration in 50–250 mm NaCl buffers, whereas the neutron Rg values showed a concentration-dependent increase as the temperature decreased in heavy water buffers. The distance distribution curves (P(r)) revealed two peaks, M1 and M2, that shifted below 2 mg/ml to indicate concentration-dependent IgG4 structures in addition to IgG4 dimer formation at high concentration in heavy water. Constrained x-ray and neutron scattering modeling revealed asymmetric solution structures for IgG4(Ser222) with extended hinge structures. The IgG4(Pro222) structure was similar. Both IgG4 structures showed that their Fab regions were positioned close enough to the Fc region to restrict C1q binding. Our new molecular models for IgG4 explain its inability to activate complement and clarify aspects of its stability and function for therapeutic applications.  相似文献   

5.
Accurate force fields are essential for the success of molecular dynamics simulations. In apparent contrast to the conformational preferences of most force fields, recent NMR experiments suggest that short polyalanine peptides in water populate the polyproline II structure almost exclusively. To investigate this apparent contradiction, with its ramifications for the assessment of molecular force fields and the structure of unfolded proteins, we performed extensive simulations of Ala5 in water (∼5 μs total time), using twelve different force fields and three different peptide terminal groups. Using either empirical or density-functional-based Karplus relations for the J-couplings, we find that most current force fields do overpopulate the α-region, with quantitative results depending on the choice of Karplus relation and on the peptide termini. Even after reweighting to match experiment, we find that Ala5 retains significant α- and β-populations. In fact, several force fields match the experimental data well before reweighting and have a significant helical population. We conclude that radical changes to the best current force fields are not necessary, based on the NMR data. Nevertheless, experiments on short peptides open the way toward the systematic improvement of current simulation models.  相似文献   

6.
The human skin provides a physiochemical and biological protective barrier due to the unique structure of its outermost layer known as the Stratum corneum. This layer consists of corneocytes and a multi-lamellar lipid matrix forming a composite, which is a major determining factor for the barrier function of the Stratum corneum. A substantiated understanding of this barrier is necessary, as controlled breaching or modulation of the same is also essential for various health and personal care applications such as topical drug delivery and cosmetics to a name few.In this study, we discuss the state-of-the-art of neutron diffraction techniques, using specifically deuterated lipids, combined with the information obtained from molecular models using molecular dynamics simulations, to understand the structure and barrier function of the Stratum corneum lipid matrix.As an example, the effect of ceramide concentration on a lipid lamella system consisting of CER[NP]/CER[AP]/Cholesterol/free fatty acid (deprotonated) is studied. This study demonstrates the usefulness of the combined approach of neutron diffraction and molecular dynamics simulations for effective analysis of the model systems created for the Stratum corneum lipid matrix. The optimization of force fields by comparison with experimental data is furthermore an important step in the direction of providing a predictive quality.  相似文献   

7.
The catalytic activity of Candida antarctica lipase B upon alcoholysis of a constant concentration of 15.2% vinyl acetate (vol/vol) and varying concentrations of methanol (0.7–60%) in toluene was determined experimentally by measuring the initial reaction velocity. The molecular mechanism of the deactivation of the enzyme by methanol was investigated by fitting the experimental data to a kinetic model and by molecular dynamics simulations of C. antarctica lipase B in toluene–methanol–water mixtures.  相似文献   

8.
A congeneric series of benzamidine-type ligands with a central proline moiety and a terminal cycloalkyl group—linked by a secondary amine, ether, or methylene bridge—was synthesized as trypsin inhibitors. This series of inhibitors was investigated by isothermal titration calorimetry, crystal structure analysis in two crystal forms, and molecular dynamics simulations. Even though all of these congeneric ligands exhibited essentially the same affinity for trypsin, their binding profiles at the structural, dynamic, and thermodynamic levels are very distinct. The ligands display a pronounced enthalpy/entropy compensation that results in a nearly unchanged free energy of binding, even though individual enthalpy and entropy terms change significantly across the series. Crystal structures revealed that the secondary amine-linked analogs scatter over two distinct conformational families of binding modes that occupy either the inside or of the outside the protein's S3/S4 specificity pocket. In contrast, the ether-linked and methylene-linked ligands preferentially occupy the hydrophobic specificity pocket. This also explains why the latter ligands could only be crystallized in the conformationally restricting closed crystal form whereas the derivative with the highest residual mobility in the series escaped our attempts to crystallize it in the closed form; instead, a well-resolved structure could only be achieved in the open form with the ligand in disordered orientation. These distinct binding modes are supported by molecular dynamics simulations and correlate with the shifting enthalpic/entropic signatures of ligand binding. The examples demonstrate that, at the molecular level, binding modes and thermodynamic binding signatures can be very different even for closely related ligands. However, deviating binding profiles provide the opportunity to optimally address a given target.  相似文献   

9.
The formation of human islet amyloid polypeptide (hIAPP) is implicated in the loss of pancreatic β-cells in type II diabetes. Rat amylin, which differs from human amylin at six residues, does not lead to formation of amyloid fibrils. Pramlintide is a synthetic analog of human amylin that shares three proline substitutions with rat amylin. Pramlintide has a much smaller propensity to form amyloid aggregates and has been widely prescribed in amylin replacement treatment. It is known that the three prolines attenuate β-sheet formation. However, the detailed effects of these proline substitutions on full-length hIAPP remain poorly understood. In this work, we use molecular simulations and bias-exchange metadynamics to investigate the effect of proline substitutions on the conformation of the hIAPP monomer. Our results demonstrate that hIAPP can adopt various β-sheet conformations, some of which have been reported in experiments. The proline substitutions perturb the formation of long β-sheets and reduce their stability. More importantly, we find that all three proline substitutions of pramlintide are required to inhibit β conformations and stabilize the α-helical conformation. Fewer substitutions do not have a significant inhibiting effect.  相似文献   

10.
11.
Abstract

The structure of liquid methanol at 298.15 K is investigated by performing molecular dynamics (MD) simulations in NVE ensemble using two 3-site force field models. The simulated structural results are compared with the recent neutron diffraction (ND) results obtained at the partial pair distribution function (pdf) level by employing H/D substitution on the hydroxyl hydrogen, Ho. Overall agreement is found between the simulated and experimental total intermolecular radial distribution functions (rdfs). The ability of the 3-site model simulations to satisfactorily reproduce experimental X—X (X = C, O or H- a methyl hydrogen) intermolecular partial distribution function, dominated by contributions from the methyl group. demonstrates that the methyl group does not participate in any bonding in the liquid. However, a comparison between the simulated and experimental Ho—Ho and X—Ho functions reveals that discrepancies still exist at a quantitative level.  相似文献   

12.
Human immunoglobulin G subclass 3 (IgG3) possesses a uniquely long hinge region that separates its Fab antigen-binding and Fc receptor-binding regions. Owing to this hinge length, the molecular structure of full-length IgG3 remains elusive, and the role of the two conserved Fc glycosylation sites are unknown. To address these issues, we subjected glycosylated and deglycosylated human myeloma IgG3 to multidisciplinary solution structure studies. Using analytical ultracentrifugation, the elongated structure of IgG3 was determined from the reduced sedimentation coefficients s020,w of 5.82 to 6.29 S for both glycosylated and deglycosylated IgG3. X-ray and neutron scattering showed that the Guinier RG values were 6.95 nm for glycosylated IgG3 and were unchanged after deglycosylation, again indicating an elongated structure. The distance distribution function P(r) showed a maximum length of 25 to 28 nm and three distinct maxima. The molecular structure of IgG3 was determined using atomistic modeling based on molecular dynamics simulations of the IgG3 hinge and Monte Carlo simulations to identify physically realistic arrangements of the Fab and Fc regions. This resulted in libraries containing 135,135 and 73,905 glycosylated and deglycosylated IgG3 structures, respectively. Comparisons with the X-ray and neutron scattering curves gave 100 best-fit models for each form of IgG3 that accounted for the experimental scattering curves. These models revealed the first molecular structures for full-length IgG3. The structures exhibited relatively restricted Fab and Fc conformations joined by an extended semirigid hinge, which explains the potent effector functions of IgG3 relative to the other subclasses IgG1, IgG2, and IgG4.  相似文献   

13.
Cisproline(i?1)-aromatic(i) interactions have been detected in several short peptides in aqueous solution by analysis of anomalous chemical shifts measured by 1H-NMR spectroscopy. This formation of local structure is of importance for protein folding and binding properties. To obtain an atomic-detail characterisation of the cisproline(i?1)-aromatic(i) interaction in terms of structure, energetics and dynamics, we studied the minimal peptide unit, blocked Ala-cisPro-Tyr, using computational and experimental techniques. Structural database analyses and a systematic search revealed two groups of conformations displaying a cisproline(i?1)-aromatic(i) interaction. These conformations were taken as seeds for molecular dynamics simulations in explicit solvent at 278 K. During a total of 33.6 ns of simulation, all the `folded' conformations and some `unfolded' states were sampled. 1H- and 13C-chemical shifts and 3J-coupling constants were measured for the Ala-Pro-Tyr peptide. Excellent agreement was found between all the measured and computed NMR properties, showing the good quality of the force field. We find that under the experimental and simulation conditions, the Ala-cisPro-Tyr peptide is folded 90% of the time and displays two types of folded conformation which we denote `a' and `b'. The type a conformations are twice as populated as the type b conformations. The former have the tyrosine ring interacting with the alanine α proton and are enthalpically stabilised. The latter have the aromatic ring interacting with the proline side chain and are entropically stabilised. The combined and complementary use of computational and experimental techniques permitted derivation of a detailed scenario of the `folding' of this peptide.  相似文献   

14.
The elastic properties (stretching and bending moduli) of myosin are expected to play an important role in its function. Of particular interest is the extended α-helical coiled-coil portion of the molecule. Since there is no high resolution structure for the entire coiled-coil, a study is made of the scallop myosin II S2 subdomain for which an x-ray structure is available (Protein Data Bank 1nkn). We estimate the stretching and bending moduli of the S2 subdomain with an atomic level model by use of molecular simulations. Results were obtained from nonequilibrium molecular dynamics simulations in the presence of an external force, from the fluctuations in equilibrium molecular dynamics simulations and from normal modes. In addition, a poly-Ala (78 amino acid residues) α-helix model was examined to test the methodology and because of its interest as part of the lever arm. As expected, both the α-helix and coiled-coil S2 subdomain are very stiff for stretching along the main axis, with the stretching stiffness constant in the range 60-80 pN/nm (scaled to the 60 nm long S2). Both molecules are much more flexible for bending with a lateral stiffness of ∼0.010pN/nm for the S2 and 0.0055pN/nm for the α-helix (scaled to 60 nm). These results are expected to be useful in estimating cross-bridge elasticity, which is required for understanding the strain-dependent transitions in the actomyosin cycle and for the development of three-dimensional models of muscle contraction.  相似文献   

15.
Human purine nucleoside phosphorylase (HsPNP) is a target for inhibitor development aiming at T-cell immune response modulation. In this work, we report the development of a new set of empirical scoring functions and its application to evaluate binding affinities and docking results. To test these new functions, we solved the structure of HsPNP and 2-mercapto-4(3H)-quinazolinone (HsPNP:MQU) binary complex at 2.7 Å resolution using synchrotron radiation, and used these functions to predict ligand position obtained in docking simulations. We also employed molecular dynamics simulations to analyze HsPNP in two conditions, as apoenzyme and in the binary complex form, in order to assess the structural features responsible for stability. Analysis of the structural differences between systems provides explanation for inhibitor binding. The use of these scoring functions to evaluate binding affinities and molecular docking results may be used to guide future efforts on virtual screening focused on HsPNP.  相似文献   

16.
BackgroundAntimicrobial peptides (AMPs) are molecules with potential application for the treatment of microorganism infections. We, herein, describe the structure, activity, and mechanism of action of RQ18, an α-helical AMP that displays antimicrobial activity against Gram-positive and Gram-negative bacteria, and yeasts from the Candida genus.MethodsA physicochemical-guided design assisted by computer tools was used to obtain our lead peptide candidate, named RQ18. This peptide was assayed against Gram-positive and Gram-negative bacteria, yeasts, and mammalian cells to determine its selectivity index. The secondary structure and the mechanism of action of RQ18 were investigated using circular dichroism, large unilamellar vesicles, and molecular dynamic simulations.ResultsRQ18 was not cytotoxic to human lung fibroblasts, peripheral blood mononuclear cells, red blood cells, or Vero cells at MIC values, exhibiting a high selectivity index. Circular dichroism analysis and molecular dynamic simulations revealed that RQ18 presents varying structural profiles in aqueous solution, TFE/water mixtures, SDS micelles, and lipid bilayers. The peptide was virtually unable to release carboxyfluorescein from large unilamellar vesicles composed of POPC/cholesterol, model that mimics the eukaryotic membrane, indicating that vesicles' net charges and the presence of cholesterol may be related with RQ18 selectivity for bacterial and fungal cell surfaces.ConclusionsRQ18 was characterized as a membrane-active peptide with dual antibacterial and antifungal activities, without compromising mammalian cells viability, thus reinforcing its therapeutic application.General significanceThese results provide further insight into the complex process of AMPs interaction with biological membranes, in special with systems that mimic prokaryotic and eukaryotic cell surfaces.  相似文献   

17.
Ten varieties of Sorghum bicolor (L.) Moench were grown as callus cultures under conditions of water stress, which was induced by addition of polyethylene glycol (molecular weight 8000) in the medium. Growth and free proline were estimated in the control and water-stressed cultures. In all varieties, proline levels were low in the absence of water stress and the levels increased in response to water stress. However, the magnitude of these increases were not correlated with stress tolerance of the individual varieties in culture. Thus increase in proline seems to be an incidental consequence of stress in vitro and not an adaptive response to combat water stress in sorghum.  相似文献   

18.
Although lipid force fields (FFs) used in molecular dynamics (MD) simulations have proved to be accurate, there has not been a systematic study on their accuracy over a range of temperatures. Motivated by the X-ray and neutron scattering measurements of common phosphatidylcholine (PC) bilayers (Ku?erka et al. BBA. 1808: 2761, 2011), the CHARMM36 (C36) FF accuracy is tested in this work with MD simulations of six common PC lipid bilayers over a wide range of temperatures. The calculated scattering form factors and deuterium order parameters from the C36 MD simulations agree well with the X-ray, neutron, and NMR experimental data. There is excellent agreement between MD simulations and experimental estimates for the surface area per lipid, bilayer thickness (DB), hydrophobic thickness (DC), and lipid volume (VL). The only minor discrepancy between simulation and experiment is a measure of (DB − DHH) / 2 where DHH is the distance between the maxima in the electron density profile along the bilayer normal. Additional MD simulations with pure water and heptane over a range of temperatures provide explanations of possible reasons causing the minor deviation. Overall, the C36 FF is accurate for use with liquid crystalline PC bilayers of varying chain types and over biologically relevant temperatures.  相似文献   

19.
Structural and dynamic properties of β-lactoglobulin (β-LG) were revealed as a function of alcohol concentration in ethanol- and trifluoroethanol(TFE)-water mixtures with circular dichroism (CD), small-angle neutron scattering (SANS) and quasi-elastic neutron scattering (QENS). The CD spectra showed that an increase in TFE concentration promotes the formation of the β-sheet structure of β-LG. The SANS-intensities were fitted using form factors for two attached spheres for the native and native-like states of the protein. At higher alcohol concentrations, where aggregation takes place, a form factor modelling diffusion limited colloidal aggregation (DLCA) was employed. The QENS-data were analyzed in terms of internal motions for all alcohol concentrations. While low concentrations of TFE (10% (v/v)) lead to an increase of the mean square amplitudes of vibrations < u2> and a retention of a native-like structure — but not to an increase of the characteristic radius of proton diffusion processes a. Addition of 20% (v/v) of TFE induces aggregation, going along with a further increase of < u2>. Further increase of TFE concentration to 30% (v/v) changes the nanoscale structure of the oligomeric nucleate, but induces no further significant changes in < u2>. The present study underlines the necessity of methods sensitive to the dynamics of a system to obtain a complete picture of a molecular process.  相似文献   

20.
We used time-resolved Förster resonance energy transfer, circular dichroism, and molecular dynamics simulation to investigate the structural dependence of synaptotagmin 1’s intrinsically disordered region (IDR) on phosphorylation and dielectric constant. We found that a peptide corresponding to the full-length IDR sequence, a ~60-residue strong polyampholyte, can sample structurally collapsed states in aqueous solution, consistent with its κ-predicted behavior, where κ is a sequence-dependent parameter that is used to predict IDR compaction. In implicit solvent simulations of this same sequence, lowering the dielectric constant to more closely mimic the environment near a lipid bilayer surface promoted further sampling of collapsed structures. We then examined the structural tendencies of central region residues of the IDR in isolation. We found that the exocytosis-modulating phosphorylation of Thr112 disrupts a local disorder-to-order transition induced by trifluoroethanol/water mixtures that decrease the solution dielectric constant and stabilize helical structure. Implicit solvent simulations on these same central region residues testing the impact of dielectric constant alone converge on a similar result, showing that helical structure is formed with higher probability at a reduced dielectric. In these helical conformers, lysine-aspartic acid salt bridges contribute to stabilization of transient secondary structure. In contrast, phosphorylation results in formation of salt bridges unsuitable for helix formation. Collectively, these results suggest a model in which phosphorylation and compaction of the IDR sequence regulate structural transitions that in turn modulate neuronal exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号