首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formyl peptide receptor (FPR) is a chemotactic G protein-coupled receptor found on the surface of phagocytes. We have previously shown that the formyl peptide binding site maps to the membrane-spanning region (Miettinen, H. M., Mills, J. S., Gripentrog, J. M., Dratz, E. A., Granger, B. L., and Jesaitis, A. J. (1997) J. Immunol. 159, 4045-4054). Recent reports have indicated that non-formylated peptides, such as MMWLL can also activate this receptor (Chen, J., Bernstein, H. S., Chen, M., Wang, L., Ishi, M., Turck, C. W., and Coughlin, S. R. (1995) J. Biol. Chem. 270, 23398-23401.) Here we show that the selectivity for the binding of different NH(2)-terminal analogs of MMWLL or MLF can be markedly altered by mutating Asp-106 to asparagine or Arg-201 to alanine. Both D106N and R201A produced a similar change in ligand specificity, including an enhanced ability to bind the HIV-1 peptide DP178. In contrast, the mutation R205A exhibited altered specificity at the COOH terminus of fMLF, with R205A binding fMLF-O-butyl > fMLF-O-methyl > fMLF, whereas wt FPR bound fMLF > fMLF-O-methyl approximately fMLF-O-butyl. These data, taken together with our previous finding that the leucine side chain of fMLF is probably bound to FPR near FPR (93)VRK(95) (Mills, J. S., Miettinen, H. M., Barnidge, D., Vlases, M. J., Wimer-Mackin, S., Dratz, E. A., and Jesaitis, A. J. (1998) J. Biol. Chem. 273, 10428-10435.), indicate that the most likely positioning of fMLF in the binding pocket of FPR is approximately parallel to the fifth transmembrane helix with the formamide group of fMLF hydrogen-bonded to both Asp-106 and Arg-201, the leucine side chain pointing toward the second transmembrane region, and the COOH-terminal carboxyl group of fMLF ion-paired with Arg-205.  相似文献   

2.
Unlike formyl peptide receptor 1 (FPR1), FPR2/ALX (FPR2) interacts with peptides of diverse sequences but has low affinity for the Escherichia coli-derived chemotactic peptide fMet-Leu-Phe (fMLF). Using computer modeling and site-directed mutagenesis, we investigated the structural requirements for FPR2 to interact with formyl peptides of different length and composition. In calcium flux assay, the N-formyl group of these peptides is necessary for activation of both FPR2 and FPR1, whereas the composition of the C-terminal amino acids appears more important for FPR2 than FPR1. FPR2 interacts better with pentapeptides (fMLFII, fMLFIK) than tetrapeptides (fMLFK, fMLFW) and tripeptide (fMLF) but only weakly with peptides carrying negative charges at the C terminus (e.g. fMLFE). In contrast, FPR1 is less sensitive to negative charges at the C terminus. A CXCR4-based homology model of FPR1 and FPR2 suggested that Asp-2817.32 is crucial for the interaction of FPR2 with certain formyl peptides as its negative charge may be repulsive with the terminal COO- group of fMLF and negatively charged Glu in fMLFE. Asp-2817.32 might also form a stable interaction with the positively charged Lys in fMLFK. Site-directed mutagenesis was performed to remove the negative charge at position 281 in FPR2. The D2817.32G mutant showed improved affinity for fMLFE and fMLF and reduced affinity for fMLFK compared with wild type FPR2. These results indicate that different structural determinants are used by FPR1 and FPR2 to interact with formyl peptides.  相似文献   

3.
In order to explore the properties of chemotactic N-formylpeptides containing isopeptide bonds within their backbones, a group of lysine-containing analogs of the prototypical chemotactic tripeptide N-formylmethionyl-leucyl-phenylalanine (fMLF) was synthesized. The new analogs were designed by adding to the HCO-Met or Boc-Met residue a dipeptide fragment made up of Lys and Phe residues joined through Lys N alpha or N epsilon bonds, in all possible combinations. Thus, the following six pairs of tripeptides were synthesized and examined for their bioactivity: RCO-Met-Lys(Z)-Phe-OMe (2a, b), RCO-Met-Lys(Z-Phe)-OMe (3a, b), Z-Lys(RCO-Met)-Phe-OMe (4a, b), Z-Phe-Lys(RCO-Met)-OMe (5a, b), RCO-Met-Phe-Lys(Z)-OMe (6a, b) and Z-Lys(RCO-Met-Phe)-OMe (7a, b), with R=OC(CH3)(3 )and R=H for compounds a and b, respectively. All the new models were characterized fully and their activity (chemotaxis, superoxide anion production and lysozyme release) on human neutrophils determined as agonists (compounds b) and antagonists (compounds a). All N-formyl derivatives 2b-7b are less potent than fMLF-OMe as chemoattractants, but compound 7b exhibits selective activity as superoxide anion producer. Derivatives 2a-7a do not show antagonistic activity towards fMLF induced chemotaxis and O(2)(-) production, however, all these compounds except 4a antagonize lysozyme release by 60%.  相似文献   

4.
The new fMLF analogues 1-4, incorporating chimeric S-proline-methionine residues (namely the homochiral cis-4(S)-methylthio-(S)-proline (10) and the heterochiral trans-4(R)-methylthio-(S)-proline) (17) in place of the native S-methionine, have been prepared; their solution conformation and activity as agonists or antagonists of formylpeptide receptors have been studied. In addition to peptides 1-4, which maintain the Met gamma-thiomethyl-ether function, the analogues Boc-PLF-OMe (18) and For-PLF-OMe (19) devoid, as compared with 1-4, of position 1 side chain, have been synthesized and their activity examined.  相似文献   

5.
N-Formylypeptides such as fMet-Leu-Phe (fMLF) potently induce superoxide production through NADPH oxidase activation. The receptors that mediate this response have not been defined. Here, we provide definitive proof using a mouse model that formyl peptide receptor (FPR) is a receptor, but not the only receptor, that mediates fMLF-induced oxidase activation. In wild-type (FPR(+/+)) mouse neutrophils, superoxide production is dependent on the concentration of fMLF with an EC(50) of approximately 5 microM and a peak at approximately 50 microM. In contrast, FPR-deficient (FPR(-/-)) mouse neutrophils produced markedly less superoxide with an EC(50) of approximately 50 microM and a peak at approximately 200 microM. Yet, FPR(+/+) and FPR(-/-) neutrophils showed similar oxidase activation kinetics and G(i) protein-dependent pharmacological sensitivities. These results suggested that a second receptor, likely FPR2, mediates superoxide production at high concentrations of fMLF. This less sensitive second pathway may permit continued oxidant generation in response to formyl peptides when FPR is desensitized in high concentrations of the chemotactic gradient.  相似文献   

6.
A tridentate single amino acid chelate (SAAC) derived from N-alpha-Fmoc-l-lysine was incorporated within a short peptide sequence using an automated peptide synthesizer. Novel derivatives of the chemotactic peptide fMLF were prepared such that the SAAC and its Re complex were selectively placed between a terminal glycine amino acid and the targeting fMLF sequence. The products, which were synthesized in parallel, were characterized by mass spectrometry and multi-NMR spectroscopy. The latter technique demonstrated that the structures of the targeting portions of the peptides are the same in the SAAC and Re-SAAC derivatives. The affinities of the reported compounds for the formyl peptide receptor were subsequently determined using flow cytometry and were found to be comparable to that of the parent peptide. The results of this work demonstrate the feasibility and numerous benefits of using the SAAC system to prepare peptide-targeted Tc(I) and Re(I) radiopharmaceuticals.  相似文献   

7.
The aim of this study was to clarify the role of the actin cytoskeleton during chemotactic peptide fMet-Leu-Phe (fMLF)-stimulated respiratory burst in human neutrophil granulocytes. Reactive oxygen species (ROS) was measured as luminol-amplified chemiluminescence (CL) and F-actin content as bodipy phallacidin fluorescence in neutrophils treated with latrunculin B or jasplakinolide, an inhibitor and activator of actin polymerization, respectively. Latrunculin B markedly decreased, whereas jasplakinolide increased, the F-actin content in neutrophils, unstimulated or stimulated with fMLF. Latrunculin B enhanced the fMLF-triggered ROS-production more than tenfold. Jasplakinolide initially inhibited the fMLF-induced CL-response, however, caused a potent second sustained phase (>400% of control). Both actin drugs triggered a substantial CL-response when added 5-25 min after fMLF. This was also valid for chemotactic doses of fMLF, where latrunculin B and jasplakinolide amplified the ROS-production 5-10 times. By using specific signal transduction inhibitors, we found that the NADPH oxidase activation triggered by destabilization of the actin cytoskeleton occurs downstream of phospholipase C and protein kinase C but is mediated by Rho GTPases and tyrosine phosphorylation. In conclusion, rearrangements of the actin cytoskeleton are a prerequisite in connecting ligand/receptor activation, generation of second messengers and assembly of the NADPH oxidase in neutrophil granulocytes.  相似文献   

8.
N-Formyl-methionyl peptides can specifically bind to surface receptors on phagocytic cells. A single copy of N-formyl-methionine-leucine-phenylalanine (fMLF) covalently linked to a poly(ethylene glycol)-based polymer displayed reduced binding avidity (K(d) = 190 nM) for differentiated HL-60 cells relative to free fMLF (K(d) = 28 nM). Increasing the number of fMLF residues (up to eight) attached to a single polymer results in enhanced avidity for these cells (K(d) = 0.18 nM), which appears to be independent of whether the polymer backbone is linear or branched. However, no conjugate showed enhanced ability to activate phagocytic cells, relative to the free peptide (EC(50) = 5 nM), as measured by transient stimulation of release of calcium ions from intracellular stores into the cytoplasm. A polymer bearing four fMLF and four digoxigenin residues showed specific enhancement in binding to differentiated HL-60 cells and mouse peritoneal macrophages in situ relative to a polymer lacking fMLF; no such enhancement was seen in binding to receptor-negative lymphocytic Jurkat cells. These results suggest that multiple fMLF residues linked to a drug-delivery polymer can be used to target appended drugs to phagocytic cells with relatively little toxicity due to cellular activation.  相似文献   

9.
Spinorphin is an endogenous heptapeptide (leucylvalylvalyltyrosylprolyltryptophylthreonine), first isolated from bovine spinal cord, whose sequence matches a conserved region of beta-hemoglobin. Also referred to as LVV-hemorphin-4 and a member of the nonclassical opioid hemorphin family, spinorphin inhibits enkephalin-degrading enzymes and is analgesic. Recently, spinorphin was reported to block neutrophil activation induced by the chemotactic N-formylpeptide N-formylmethionylleucylphenylalanine (fMLF), suggesting a potential role as an endogenous negative regulator of inflammation. Here we use both gain- and loss-of-function genetic tests to identify the specific mechanism of spinorphin action on neutrophils. Spinorphin induced calcium flux in normal mouse neutrophils, but was inactive in neutrophils from mice genetically deficient in the fMLF receptor subtype FPR (N-formylpeptide receptor). Consistent with this, spinorphin induced calcium flux in human embryonic kidney 293 cells transfected with mouse FPR, but had no effect on cells expressing the closely related fMLF receptor subtype FPR2. Despite acting as a calcium-mobilizing agonist at FPR, spinorphin was a weak chemotactic agonist and effectively blocked neutrophil chemotaxis induced by fMLF at concentrations selective for FPR. Spinorphin did not affect mouse neutrophil chemotaxis induced by concentrations of fMLF that selectively activate FPR2. Thus, spinorphin blocks fMLF-induced neutrophil chemotaxis by acting as a specific antagonist at the fMLF receptor subtype FPR.  相似文献   

10.
Urokinase receptor (uPAR) plays a key role in physiological and pathological processes sustained by an altered cell migration. We have developed peptides carrying amino acid substitutions along the Ser(88)-Arg-Ser-Arg-Tyr(92) (SRSRY) uPAR chemotactic sequence. The peptide pyro glutamic acid (pGlu)-Arg-Glu-Arg-Tyr-NH2 (pERERY-NH(2)) shares the same binding site with SRSRY and competes with N-formyl-Met-Leu-Phe (fMLF) for binding to the G-protein-coupled N-formyl-peptide receptor (FPR). pERERY-NH(2) is a dose-dependent inhibitor of both SRSRY- and fMLF-directed cell migration, and prevents agonist-induced FPR internalization and fMLF-dependent ERK1/2 phosphorylation. pERERY-NH(2) is a new and potent uPAR inhibitor which may suggest the generation of new pharmacological treatments for pathological conditions involving increased cell migration.  相似文献   

11.
The tripeptide formyl–Met–Leu–Phe (fMLF) is a prototype of N-formylated chemotactic peptides for neutrophils owing to its ability to bind and activate the G protein-coupled formyl peptide receptor (FPR). Here, we developed an 18F-labeled fMLF derivative targeting FPR as a positron emission tomography (PET) imaging probe for bacterial infections. The study demonstrates that the fMLF derivative fMLFXYk(FB)k (X?=?Nle) has a high affinity for FPR (Ki?=?0.62?±?0.13?nM). The radiochemical yield and purity of [18F]fMLFXYk(FB)k were 16% and >96%, respectively. The in vivo biodistribution study showed that [18F]fMLFXYk(FB)k uptake was higher in the bacterial infected region than in the non-infected region. We observed considerably higher infection-to-muscle ratio of 4.6 at 60?min after [18F]fMLFXYk(FB)k injection. Furthermore, small-animal PET imaging studies suggested that [18F]fMLFXYk(FB)k uptake in the bacterial infected region was clearly visualized 60?min after injection.  相似文献   

12.
We synthesized several Phe-d-Leu-Phe-d-Leu-Phe analogues in which tert-butyloxycarbonyl and four different ureido substituents were included at the N-terminal of the peptides, obtained as free acid and methyl-ester derivatives. Their biological action was analysed on human neutrophil responses induced by N-formyl-Met-Leu-Phe (fMLF). Several in vitro assays were carried out: receptor binding, measurement of Ca2+ intracellular concentration, chemotaxis, superoxide anion production and enzyme release. A conformational investigation, using infrared absorption and circular dichroism, was also performed. Our results demonstrate that the compounds examined prefer an ordered conformation (beta-turn) in amphipathic environment, and are able to antagonize the neutrophil functions evoked by fMLF. Moreover, the extent of inhibition of Ca2+ intracellular enhancement, as well as of superoxide anion production and granule enzyme release, appears related to their affinity toward the formylpeptide receptor. The free acid peptide derivatives appear to be more active antagonists than the methyl-ester ones.  相似文献   

13.
The prototypic formyl peptide N-formyl-Met-Leu-Phe (fMLF) is a major chemoattractant found in Escherichia coli culture supernatants and a potent agonist at human formyl peptide receptor (FPR) 1. Consistent with this, fMLF induces bactericidal functions in human neutrophils at nanomolar concentrations. However, it is a much less potent agonist for mouse FPR (mFPR) 1 and mouse neutrophils, requiring micromolar concentrations for cell activation. To determine whether other bacteria produce more potent agonists for mFPR1, we examined formyl peptides from Listeria monocytogenes and Staphylococcus aureus for their abilities to activate mouse neutrophils. A pentapeptide (N-formyl-Met-Ile-Val-Ile-Leu (fMIVIL)) from L. monocytogenes and a tetrapeptide (N-formyl-Met-Ile-Phe-Leu (fMIFL)) from S. aureus were found to induce mouse neutrophil chemotaxis at 1-10 nM and superoxide production at 10-100 nM, similar to the potency of fMLF on human neutrophils. Using transfected cell lines expressing mFPR1 and mFPR2, which are major forms of FPRs in mouse neutrophils, we found that mFPR1 is responsible for the high potency of fMIVIL and fMIFL. In comparison, activation of mFPR2 requires micromolar concentrations of the two peptides. Genetic deletion of mfpr1 resulted in abrogation of neutrophil superoxide production and degranulation in response to fMIVIL and fMIFL, further demonstrating that mFPR1 is the primary receptor for detection of these formyl peptides. In conclusion, the formyl peptides from L. monocytogenes and S. aureus are approximately 100-fold more potent than fMLF in activating mouse neutrophils. The ability of mFPR1 to detect bacterially derived formyl peptides indicates that this important host defense mechanism is conserved in mice.  相似文献   

14.
HCO-Met-Leu-Ain-OMe (2), an analog of the chemotactic peptide HCO-Met-Leu-Phe-OH, containing the conformationally blocked residue of the 2-aminoindane-2-carboxylic acid (Ain) has been synthesized and its crystal and molecular conformation has been determined. Crystals of 2 are monoclinic, space group P2(1), with a = 15.059(7), b = 18.548(7), c = 9.600(4) A; beta = 85.04(3) degrees. The structure has been solved by direct methods and refined to R = 0.069 for 2813 independent reflections with I greater than 2.5 sigma (I). Two independent molecules A and B have been found in the asymmetric unit of the crystal of 2. Their conformation can be described as extended at the Met and Leu residues, but folded at the C-terminal Ain residue. The helical folding is left- and right-handed in the A and B molecule, respectively. The crystal packing is characterized by ribbons of intermolecular hydrogen bonded molecules extended along the c direction. The constrained analog 2 is highly active in the superoxide production, thus indicating that a stabilization of a helical folding at the C-terminal region of chemotactic tripeptides maintains the activity. The orientation of the aromatic ring, with respect to its adjacent backbone atoms, does not seem critical for the activity.  相似文献   

15.
As a part of a research program aimed at studying structure activity relationship in the field of chemotactic peptides, modified analogs of the potent chemoattractant HCO-Met-Leu-Phe-OH (fMLP) of the general formula HCO-Xaa-Leu-Yaa-OMe are examined. 4-Aminotetrahydrothiopyran-4-carboxylic acid (Thp) and 2-aminoindane-2-carboxylic acid (Ain) have been chosen as achiral, conformationally restricted amino acids suitable to mimick the external Met and Phe residues of fMLP-OMe. Studies on a first model, namely [Ain3]fMLP-OMe 1, have already been reported (12). Here the two remaining analogs [Thp1, Ain3] 2 and [Thp1] 3 have been synthesized. The conformation in the crystal of the disubstituted analog 2 has been determined and compared with those adopted by the parent fMLP-OMe and by previously studied models. The backbone conformation of 2 is characterized by helical folding centred at each of the three residues with the central Leu presenting helical handedness opposite to those of the two adjacent achiral residues. This conformation presents strong similarities with that adopted in the crystal by fMLP-OMe and resembles the conformation of fMLP bound to immunoglobulin (Bence-Jones dimer). The conformationally restricted analogs 2 and 3 are more active than the parent in the stimulation of directed mobility of human neutrophils but are practically inactive in the superoxide production. Crystals of 2 are orthorhombic, s.g. P2(1)2(1)2(1), with a = 21.934 (8), b = 10.856 (2), c = 10.380 (2) A. The structure has been refined to R = 0.071 for 2301 independent reflections with I greater than 1.5 sigma.  相似文献   

16.
O4-Methylthymidine (O4medT) is a promutagen. To correlate its biological properties to changes in the electronic, geometric, and conformational properties of the pyrimidine base resulting from the keto to enol shift arising from methylation, an X-ray study of O4medT was undertaken. The crystal data are a = 4.950 (2) A, b = 12.648 (1) A, c = 19.305 (2) A, space group P2(1)2(1)2(1), Z = 4, and R = 0.042. The D-deoxyribofuranosyl ring is puckered in the uncommon 1T2 twist conformation with the phase angle of pseudorotation P = 133.8 (5)degrees. The amplitude of puckering tau m = 31.4 (3)degrees shows that the ring is considerably flattened. The base is in the anti conformation [chi CN = 40.6 (4)degrees], and the exocyclic C(4')-C(5') bond (psi) is gauche+ [46.2 (5)degrees]. Methylation produces cytosine-like conjugation for the thymine base. The methoxy group takes the syn-periplanar conformation. Two types of mispairings with guanine are possible, and both require the anti conformation for the O(4) methoxy group. Semiempirical energy calculations have been carried out and reveal that the anti conformation can be energetically assumed in the double helix by widening the exocyclic angles C(5)-C(4)-O(4) and C(4)-C(5)-C(7) and the angle C(4)-O(4)-C(8) at the methoxy group. Such coordinated expansion relieves unfavorable interactions between the C(7) and C(8) methyl groups.  相似文献   

17.
Peptide T (ASTTTNYT), a segment corresponding to residues 185-192 of gp120, the coat protein of HIV, has several important biological properties in vitro that have stimulated the search for simpler and possibly more active analogs. We have previously shown that pseudocyclic hexapeptide analogs containing the central residues of peptide T retain considerable chemotactic activity. We have now extended the design of this type of analogs to peptides containing different aromatic residues and/or Ser in lieu of Thr. The complex conformation-activity relationship of these analogs called for a reexamination of the basic conformational tendencies of peptide T itself. Here, we present an exhaustive NMR conformational study of peptide T in different media. Peptide T assumes a gamma-turn in aqueous mixtures of ethylene glycol, a type-IV beta-turn conformation in aqueous mixtures of DMF, and a type-II beta-turn conformation in aqueous mixtures of DMSO. The preferred conformations for the analogs were derived from modeling, starting from the preferred conformations of peptide T. The best models derived from the gamma-turn conformation of peptide T are those of peptides XII (DSNYSR), XIII (ETNYTK) and XVI (ESNYSR). The best models derived from the type-IV beta-turn conformation of peptide T are those of peptides XIV (KTTNYE) and XV (DSSNYR). No low-energy models could be derived starting from the type-II beta-turn conformation of peptide T. The analogs with the most favored conformations are also the most active in the chemotactic test.  相似文献   

18.
The cytolytic P2X7 purinoceptor is widely expressed on leucocytes and has sparked interest because of its peculiar ability to induce a large nonselective membrane pore following treatment of cells with ecto-ATP. Antibodies raised against synthetic P2X7 peptides generally work well in Western-Blot analyses but fail to recognize the native protein on the cell surface. Genetic immunization is a useful technique to raise antibodies directed against proteins in native conformation. Using this technique we have generated highly specific polyclonal (rabbit) and monoclonal (rat) anti-P2X7 antibodies that readily detect mouse P2X7 on the surface of living cells by immunofluorescence analyses and flow cytometry. Binding of these antibodies to P2X7 is reduced within seconds after treatment of cells with ATP, suggesting that ligand binding induces a conformational shift and/or the shedding of P2X7. By site directed mutagenesis we have mutated three conserved arginine residues (R294A, R307A, R316A) in the extracellular loop of P2X7 near the second transmembrane region. Each of these mutations results in loss of ATP response. FACS and immunoblot analyses reveal that the R294A mutant is expressed at higher levels than wild-type P2X7 in transfected cells, whereas the R307A and R316A mutants are barely detectable because there is no or very little protein synthesis of these constructs. In accord with its resistance to ATP-induced activation the R294A mutant is not down-modulated from the cell surface by ATP-treatment.  相似文献   

19.
Recent studies have demonstrated that tropoelastin and elastin-derived peptides are chemotactic for fibroblasts and monocytes. To identify the chemotactic sites on elastin, we examined the chemotactic activity of Val-Gly-Val-Ala-Pro-Gly (VGVAPG), a repeating peptide in tropoelastin. We observed that VGVAPG was chemotactic for fibroblasts and monocytes, with optimal activity at approximately 10(-8) M, and that the chemotactic activity of VGVAPG was substantial (half or greater) relative to the maximum responses to other chemotactic factors such as platelet-derived growth factor for fibroblasts and formyl-methionyl-leucyl-phenylalanine for monocytes. The possibility that at least part of the chemotactic activity in tropoelastin and elastin peptides is contained in VGVAPG sequences was supported by the following: (a) polyclonal antibody to bovine elastin selectively blocked the fibroblast and monocyte chemotactic activity of both elastin-derived peptides and VGVAPG; (b) monocyte chemotaxis to VGVAPG was selectively blocked by preexposing the cells to elastin peptides; and (c) undifferentiated (nonelastin producing) bovine ligament fibroblasts, capable of chemotaxis to platelet-derived growth factor, did not show chemotactic responsiveness to either VGVAPG or elastin peptides until after matrix-induced differentiation and the onset of elastin synthesis. These studies suggest that small synthetic peptides may be able to reproduce the chemotactic activity associated with elastin-derived peptides and tropoelastin.  相似文献   

20.
The oxygen-dependent respiratory burst is a key neutrophil function required for the killing of bacteria. However, despite intensive investigation, the molecular events which initiate the respiratory burst remain unclear. Recent reports have suggested the agonist-induced hydrolysis of cellular phosphatidylcholine (PtdCho) by phospholipase D may be an essential requirement for initiating or mediating the respiratory burst. We have investigated the effects of the chemotactic peptide N-formylmethionylleucylphenylalanine (fMLF), the phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate (TPA) and the polyunsaturated fatty acids arachidonic [20:4 (n-6)] and docosahexaenoic [22:6 (n-3)] acids in light of this hypothesis. Ethanol-inhibited superoxide production in response to 20:4, 22:6 and fMLF, in a dose-dependent fashion, suggesting an involvement of phospholipase D. The phosphatidic-acid phosphohydrolase inhibitor DL-propranolol completely inhibited superoxide production induced by both 20:4 and 22:6, and partially inhibited the response to TPA. In contrast, superoxide production in response to fMLF was increased by propranolol. fMLF and TPA, but not the fatty acids, stimulated phospholipase D as indicated by the accumulation of phosphatidic acid and, in the presence of ethanol, phosphatidylethanol derived from PtdCho. Extracellular Ca2+ was found to be an essential requirement for fMLF-induced superoxide production. However, responses to the fatty acids were dramatically enhanced under Ca(2+)-free conditions. Responses to TPA were independent of the extracellular Ca2+ concentration. Both fatty acids and fMLF, but not TPA, mobilised Ca2+ from intracellular stores, a response insensitive to the effects of both ethanol and propranolol. These results show that, unlike fMLF and TPA, the fatty acids do not cause hydrolysis of PtdCho by phospholipase D. However, the data indirectly suggests that the fatty acids may initiate the phospholipase-D-catalysed hydrolysis of phospholipids other than PtdCho.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号